Study provides strongest clues to date for causes of schizophrenia

August 25, 2013
Lead author of the study is Patrick Sullivan, M.D., of the University of North Carolina School of Medicine. Credit: UNC School of Medicine

A new genome-wide association study (GWAS) estimates the number of different places in the human genome that are involved in schizophrenia.

In particular, the study identifies 22 locations, including 13 that are newly discovered, that are believed to play a role in causing schizophrenia.

"If finding the causes of schizophrenia is like solving a , then these new results give us the corners and some of the pieces on the edges," said study lead author Patrick F. Sullivan, MD. "We've debated this for a century, and we are now zeroing in on answers."

"This study gives us the clearest picture to date of two different pathways that might be going wrong in people with schizophrenia," Sullivan said. "Now we need to concentrate our research very urgently on these two pathways in our quest to understand what causes this disabling mental illness."

Sullivan is a professor in the departments of Genetics and Psychiatry and director of the Center for Psychiatric Genomics at the University of North Carolina School of Medicine. The new study was published online Sunday, Aug. 25, 2013 by the journal Nature Genetics.

The results are based on a multi-stage analysis that began with a Swedish national sample of 5,001 schizophrenia cases and 6,243 controls, followed by a of previous GWAS studies, and finally by replication of single (SNPs) in 168 in independent samples. The total number of people in the study was more than 59,000.

One of the two pathways identified by the study, Sullivan said, is a pathway. This pathway includes the genes CACNA1C and CACNB2, whose proteins touch each other as part of an important process in . The other is the "micro-RNA 137" pathway. This pathway includes its namesake gene, MIR137 – which is a known regulator of – and at least a dozen other genes regulated by MIR137.

"What's really exciting about this is that now we can use standard, off-the-shelf genomic technologies to help us fill in the missing pieces," Sullivan said. "We now have a clear and obvious path to getting a fairly complete understanding of the genetic part of schizophrenia. That wouldn't have been possible five years ago."

Explore further: UNC investigator issues call to action for schizophrenia research

More information: Genome-wide association analysis identifies 13 new risk loci for schizophrenia, dx.doi.org/10.1038/ng.2742

Related Stories

UNC investigator issues call to action for schizophrenia research

February 10, 2012
(Medical Xpress) -- Much of medical research is aimed at figuring out what role a single gene or molecule plays in the development of disease.

Scientists discover genetic changes that may contribute to the onset of schizophrenia

July 16, 2013
Scientists from the Centre for Addiction and Mental Health (CAMH) have discovered rare genetic changes that may be responsible for the onset of schizophrenia. Several of these same genetic lesions had previously been found ...

Autism, schizophrenia and bipolar disorder may share common underlying factors

July 2, 2012
New research led by a medical geneticist at the University of North Carolina School of Medicine points to an increased risk of autism spectrum disorders (ASDs) among individuals whose parents or siblings have been diagnosed ...

New genetic risk factor found for schizophrenia

August 1, 2013
Researchers at Emory's Rollins School of Public Health have identified a large duplication on chromosome 7q11.23 as a new risk factor for schizophrenia.  (7q11.23 refers to the specific location of the duplicated region ...

Stray prenatal gene network suspected in schizophrenia

August 1, 2013
Researchers have reverse-engineered the outlines of a disrupted prenatal gene network in schizophrenia, by tracing spontaneous mutations to where and when they likely cause damage in the brain. Some people with the brain ...

Largest study reveals five major psychiatric disorders share common genetic risk factors

February 27, 2013
For the first time, scientists have discovered that five major psychiatric disorders—autism, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder and schizophrenia—share several common ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.