New research helps fight against motor neurone disease

September 27, 2013, University of Sheffield

New research from the University of Sheffield could offer solutions into slowing down the progression of motor neurone disease (MND).

Scientists from the University of Sheffield's Institute for Translational Neuroscience (SITraN) conducted pioneering research assessing how the devastating debilitating disease affects individual patients.

MND is an destroying the body's cells which control movement causing progressive disability. Present treatment options for those with MND only have a modest effect in improving the patient's quality of life.

Professor Pamela Shaw, Director of SITraN, and her research team worked in collaboration with a fellow world leading MND scientist Dr Caterina Bendotti and her group at the Mario Negri Institute for Pharmacological Research in Milan, Italy. Together they investigated why the progression of MND following onset of symptoms varies in speed, even in the presence of a known of the condition.

The research, published in the scientific journal Brain, investigated two mouse models of MND caused by an alteration in the SOD1 gene, a known cause of MND in humans. One of the strains had a rapidly progressing disease course and the other a much slower change in the symptoms of MND. The teams from Sheffield and Milan looked at the factors which might explain the differences observed in speed and severity in the progression of the disease. They used a scientific technique known as profiling to identify factors within motor neurones that control vulnerability or resistance to MND in order to shed light on the factors important for the speed of motor neurone injury in human patients.

The study, funded by the Motor Neurone Disease Association, revealed new evidence at the point of onset of the disease, before was observed, showing key differences in major and the way the protective systems of the body responded, between the profiles of the rapid progressing and slow progressing models. In the case of the model with rapidly progressing MND the motor neurones showed reduced functioning of the cellular systems for energy production, disposal of waste proteins and neuroprotection. Motor neurones from the model with more slowly progressing MND showed an increase in protective inflammation and immune responses and increased function of the mechanisms that protect motor neurones from damage.

The research provides valuable clues about mechanisms that have the effect of slowing down the progression of disabling symptoms in MND.

Professor Shaw said that the state-of-the-art Functional Genomics laboratory in SITraN had enabled the research team to use a cutting edge technique called gene expression profiling.

"This enables us to 'get inside' the motor neurones in health and disease and understand better what is happening to cause motor neurone injury in MND," she said.

"This project was a wonderful collaboration, supported by the MND Association, between research teams in Sheffield and Milan. We are very excited about the results which have given us some new ideas for treatment strategies which may help to slow disease progression in human MND."

Dr Caterina Bendotti said: "MND is a clinically heterogeneous disease with a high variability in its course which makes assessments of potential therapies difficult. Thanks to the recent evidence in our laboratory of a difference in the speed of symptom progression in two MND models carrying the same gene mutation and the successful collaboration with Professor Pamela Shaw and her team, we have identified some mechanisms that may help to predict the disease duration and eventually to slow it down.

"I strongly believe that the new hypotheses generated by this study and our ongoing collaboration are the prerequisites to be able to fight this disease."

Brian Dickie from MND Association added: "These new and important findings in mice open up the possibility for new treatment approaches in man. It is heartening to see such a productive collaboration between two of the leading MND research labs in Europe, combining their unique specialist knowledge and technical expertise in the fight against this devastating disease."

MND affects more than 6,000 sufferers in the UK with the majority of cases being sporadic but approximately five per cent of cases are familial or inherited with an identifiable genetic cause. Sufferers may lose their ability to walk, talk, eat and breathe.

Explore further: Stem cell study aids quest for motor neurone disease therapies

Related Stories

Stem cell study aids quest for motor neurone disease therapies

March 26, 2012
A breakthrough using cutting-edge stem cell research could speed up the discovery of new treatments for motor neurone disease (MND).

Researchers identify quadruplex structure in C9ORF72

December 24, 2012
(Medical Xpress)—A Motor Neurone Disease (MND) Association funded research project at UCL has given new insights into the structure and function of an MND gene called C9ORF72. The work is published in the journal Scientific ...

Stem cell discovery gives insight into motor neurone disease

February 11, 2013
A discovery using stem cells from a patient with motor neurone disease could help research into treatments for the condition. The study used a patient's skin cells to create motor neurons - nerve cells that control muscle ...

Study gives clues to causes of motor neurone disease

October 10, 2012
(Medical Xpress)—Scientists at the University of Bath are one step further to understanding the role of one of the proteins that causes the neurodegenerative disorder, Amyotrophic Lateral Sclerosis (ALS), also known as ...

Scientists propose a molecular explanation for degenerative disease

August 16, 2013
An international collaboration jointly led by scientists from Trinity College Dublin has shed new light on the origins and molecular causes of age related degenerative conditions including Motor Neurone Disease (MND). The ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.