Scientists fish for new epilepsy model and reel in potential drug

September 3, 2013
Wild-type and larval zebrafish carrying a mutation in the Scn1a gene (mimicking a severe form of pediatric epilepsy) were used for drug screening. Credit: Dr. Baraban, University of California, San Francisco.

According to new research on epilepsy, zebrafish have certainly earned their stripes. Results of a study in Nature Communications suggest that zebrafish carrying a specific mutation may help researchers discover treatments for Dravet syndrome (DS), a severe form of pediatric epilepsy that results in drug-resistant seizures and developmental delays.

Scott C. Baraban, Ph.D., and his colleagues at the University of California, San Francisco (UCSF), carefully assessed whether the mutated zebrafish could serve as a model for DS, and then developed a new to quickly identify potential treatments for DS using these fish. This study was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health and builds on pioneering epilepsy zebrafish models first described by the Baraban laboratory in 2005.

Dravet syndrome is commonly caused by a mutation in the Scn1a gene, which encodes for Nav1.1, a specific channel found in the brain. Sodium are critical for communication between and proper brain functioning.

The researchers found that the zebrafish that were engineered to have the Scn1a mutation that causes DS in humans exhibited some of the same characteristics, such as spontaneous seizures, commonly seen in children with DS. Unprovoked seizure activity in the mutant fish resulted in hyperactivity and whole-body convulsions associated with very fast swimming. These types of behaviors are not seen in normal healthy zebrafish.

"We were also surprised at how similar the mutant zebrafish drug profile was to that of Dravet patients," said Dr. Baraban. "Antiepileptic drugs shown to have some benefits in patients (such as benzodiazepines or stiripentol) also exhibited some antiepileptic activity in these mutants. Conversely, many of the that do not reduce seizures in these patients showed no effect in the mutant zebrafish."

In this study, the researchers developed a fast and automated drug screen to quickly test the effectiveness of various compounds in mutant zebrafish. The researchers tracked behavior and measured brain activity in the mutant zebrafish to determine if the compounds had an impact on seizures.

"Scn1a mutants seize often, so it is relatively easy to monitor their seizure behavior at baseline and then again after a drug application," said Dr. Baraban. "Using zebrafish placed individually in a 96-part petri dish we can accurately quantify this seizure behavior. In this way, we can test almost 100 fish at one time and quickly determine whether a drug candidate has any effect on these ."

In the first such application of this approach, UCSF researchers screened 320 compounds and found that clemizole was most effective in inhibiting . Clemizole is approved by the U.S. Food and Drug Administration and has a safe toxicology profile. "This finding was completely unexpected. Based on what is currently known about clemizole, we did not predict that it would have antiepileptic effects," said Dr. Baraban.

These findings suggest that Scn1a mutant zebrafish may serve as a good model of DS and that the drug screen may be effective in quickly identifying novel therapies for epilepsy.

Dr. Baraban also noted that someday these experiments can be "personalized," by looking at mutated zebrafish that use genetic information from individual patients.

This research was funded by the Exceptional, Unconventional Research Enabling Knowledge Acceleration (EUREKA) program at NIH that supports innovative research with the potential for big impact in biomedical science.

"The goal of the EUREKA program is to provide a means to test high-risk ideas to see if they are worth pursuing further. These kinds of ideas often come from left field and are very creative. Since they are so unique, however, there may not be any existing preliminary data to support the hypothesis or demonstrate feasibility. EUREKA grants provide an opportunity to gather this information," said Brandy Fureman, Ph.D., program director at NINDS.

This particular study was chosen in response to a request by NINDS to help spur novel research on epilepsy. "This research was selected for a EUREKA grant because it proposed a well-designed, inventive model of genetic epilepsy that could accelerate the pace of drug-screening for this devastating form of " said Dr. Fureman.

Dr. Fureman noted that these findings not only describe a novel model of Dravet syndrome, but the positive results with an unexpected FDA-approved drug may lead to new therapeutic avenues. "There is more work to be done, but I am very pleased to see these initial results. These kinds of new directions are exactly what we hoped to stimulate with the EUREKA program," she said.

Explore further: Exploring the cause of sudden unexplained death in epilepsy

More information: Scott C. Baraban et al. "Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment," Nature Communications, September 3, 2013, DOI: 10.1038/ncomms3410

Related Stories

Exploring the cause of sudden unexplained death in epilepsy

March 25, 2013
Dravet syndrome (DS) is a form of infantile-onset, treatment-resistant epilepsy that is caused by a mutation in the gene encoding a voltage-gated sodium channel, SCN1A. DS patients have a 30-fold increased risk of dying from ...

Epilepsy in a dish: Stem cell research reveals clues to disease's origins and possible treatment

July 25, 2013
A new stem cell-based approach to studying epilepsy has yielded a surprising discovery about what causes one form of the disease, and may help in the search for better medicines to treat all kinds of seizure disorders.

Investigating devastating childhood diseases just got easier

May 1, 2013
Induced pluripotent stem cells (iPScs) from the skin of patients with Dravet syndrome (DS) show Dravet-like functional impairment when they are converted into neurons, finds research in BioMed Central's open access journal ...

Researchers cure epilepsy in mice using brain cells

May 5, 2013
UCSF scientists controlled seizures in epileptic mice with a one-time transplantation of medial ganglionic eminence (MGE) cells, which inhibit signaling in overactive nerve circuits, into the hippocampus, a brain region associated ...

Zebrafish help identify mutant gene in rare muscle disease

June 4, 2013
Zebrafish with very weak muscles helped scientists decode the elusive genetic mutation responsible for Native American myopathy, a rare, hereditary muscle disease that afflicts Native Americans in North Carolina.

Zebrafish help researchers identify promising drugs

July 25, 2012
(Medical Xpress) -- “Jaws” it isn’t, but the tiny striped zebrafish is helping Tulane University scientists take a big bite out of a tough question — what drugs might be beneficial for treating psychological ...

Recommended for you

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.