Team finds new target for melanoma treatment

September 16, 2013

Scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) today announced the discovery that a gene encoding an enzyme, phosphoinositide-dependent kinase-1 (PDK1), plays an essential role in the development and progression of melanoma. The finding offers a new approach to treating this life-threatening disease.

The team of researchers, led by Ze'ev Ronai, Ph.D., professor and scientific director of Sanford-Burnham Medical Research Institute in La Jolla (San Diego, Calif.), used genetic mouse models to show the importance of the PDK1 gene in melanoma. Specifically, mice lacking the PDK1 gene in their melanocytes (cells that transform to become melanoma) had smaller melanoma tumors, a significant loss of metastasis, and a prolonged survival time. In some cases, the median survival time was increased by more than 50 percent. Further, by treating mice with the PDK1 gene with an inhibitor of PDK1 (PDK1i), the scientists were able to delay the development of melanoma and inhibit metastasis. The published results are available online in the advanced online publication of Oncogene.

"We have shown that PDK1 is required for melanoma metastasis, and that by inactivating the PDK1 enzyme we can delay the onset of melanoma lesions and almost completely abolish metastasis," Ronai said. Prior to this study, it was known that PDK1 activity played an important role in normal such as , , and . PDK1 activity was also known to be associated with specific tumor types. For example, inactivation of PDK1 activity has been shown to inhibit pancreatic cancer. This study provides the first for the importance of PDK1 in melanoma.

David Fisher, M.D., Ph.D., professor and chairman of the Edward Wigglesworth Department of Dermatology, director of the Melanoma Program, and director of Cutaneous Biology at Massachusetts General Hospital, Harvard Medical School, commented, "The study by Ronai and colleagues is novel and important for melanoma therapeutics because it identifies a new and tractable treatment approach. The investigators achieved impressive results which validate PDK1 as a new treatment target for melanoma."

"This collaboration between Sanford-Burnham and Yale researchers shows unequivocally that melanoma cells require PDK1 for both development and metastasis. The team also demonstrates that a molecular inhibitor is capable of duplicating the effects of the genetic approaches suggesting that the cancer field should invest more efforts into PDK1 targets," said Meenhard Herlynn D.V.M., D.Sc., director of Melanoma Research and leader, Molecular and Cellular Oncogenesis program at the Wistar Institute in Philadelphia, Pa.

Melanoma, Disease Progression, and Treatment

Although less common than other types of cancer, melanoma is the most deadly form of skin cancer. In the United States, over 70,000 new cases are diagnosed per year and 9,000 deaths are attributed to the disease. Metastatic melanoma is a progressive form of melanoma that happens when cancerous cells from the original tumor break off, circulate, and form new tumors in other parts of the body, leading to life-threatening disease.

Recently, advances in the treatment of melanoma that activate the immune system by targeting the molecules CTLA4 and PD1, and targeting kinases such as BRAF, have shown promise. Although these drugs have led to improved patient survival, they do not cure melanoma. Therefore, additional therapies are needed. Recently, it has been shown that a combination of targeted therapies can be more effective.

"It is important now to demonstrate the impact of PDK1 inhibition in combination with other therapies currently used in melanoma, including BRAFi or immunological targets (PD1/CTL4A), on melanoma development and . A number of PDKi are available and others are in development, offering an important addition to the currently available combination therapies. Ultimately, our goal is to see if inhibition of PDK1 will contribute to better outcomes for patients with melanoma," Ronai said.

About Protein Kinases

In many cancers, pathogenic kinases work together to disrupt the cell cycle, leading to uncontrolled cell growth and tumor formation.

Protein-kinase inhibitors block the actions of pathogenic kinases and inhibit uncontrolled cell proliferation. For this reason, cancer-specific protein-kinase inhibitors either individually or more recently as combinations of inhibitors with pharmacologic immunological modulators—"cocktails"—are being tested and used to treat cancers.

Explore further: Enhanced treatment, surveillance needed for certain melanoma patients to prevent secondary cancers

Related Stories

Enhanced treatment, surveillance needed for certain melanoma patients to prevent secondary cancers

August 14, 2013
Moffitt Cancer Center researchers suggest secondary cancers seen in melanoma patients who are being treated for a BRAF gene mutation may require new strategies, such as enhanced surveillance and combining BRAF-inhibitor therapy ...

Single injection may revolutionize melanoma treatment, Moffitt study shows

August 23, 2013
A new study at Moffitt Cancer Center could offer hope to people with melanoma, the deadliest form of skin cancer. Researchers are investigating whether an injectable known as PV-10 can shrink tumors and reduce the spread ...

Hope in stopping melanoma from spreading: Study shows that inhibiting key protein prevents metastasis to lungs in mice

March 5, 2013
(Medical Xpress)—Researchers have identified a critical protein role in the metastasis of melanoma, the most serious form of skin cancer. Inhibition of the protein known as adenosine diphosphate ribosylation factor 6 (ARF6) ...

Research breakthrough could halt melanoma metastasis

November 14, 2012
In laboratory experiments, scientists have eliminated metastasis, the spread of cancer from the original tumor to other parts of the body, in melanoma by inhibiting a protein known as melanoma differentiation associated gene-9 ...

Scientists find molecular switch that allows melanoma to resist therapy

February 2, 2012
The National Cancer Institute (NCI) estimates that as many as one in 51 men and women will be diagnosed with melanoma—the deadliest form of skin cancer—at some point during their lifetimes. A research team led by ...

Fast-acting virus targets melanoma in mice

June 17, 2013
(Medical Xpress)—Yale researchers eradicated most melanoma tumors by exposing them to a fast-acting virus, they report in the June 15 edition of the Journal of Virology.

Recommended for you

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.