Research may lead to new therapies for vascular disorders

September 13, 2013

Auckland scientists have contributed to identifying a novel genetic pathway used in the stabilisation of blood vessels.

These discoveries may open up a new approach in the development of therapies to treat .

After five years collaboration with the San Francisco-based company, Genentech, (owned by successful pharmaceutical corporation, Roche), a research team from the University of Auckland have just published a paper on the work, in Blood, the journal of the American Society for Hematology. It is considered the leading journal for reporting basic and applied haematology research.

"This has been a significant and productive collaboration for our group," says Professor Phil Crosier who leads this work in the University's Department of Molecular Medicine and Pathology. "It has been fantastic from our perspective, dealing with these talented and committed scientists from Genentech, and the culmination of this work being published in the journal Blood."

"The paper used a range of different scientific research models, where we contributed the zebrafish discoveries," says Professor Crosier. "The success of this collaboration lies in the intellectual input and high quality innovative real time work undertaken by Dr Chris Hall, a Senior Research Fellow in our group."

"The original research question was looking at whether we can use zebrafish genetics to identify targets that we might be able to develop drugs around", says Dr Hall. That turned out to be one aspect of a much wider collaboration.

"Dr. Crosier's group carried out thorough in vivo functional analyses in zebrafish of many genes that we identified. We have high regard for their scientific rigor and expertise and are very impressed by the exquisite quality of their data", says Dr. Weilan Ye, the lead scientist of this project at Genentech.

"It has been richly rewarding for us, especially the way they value our expertise, paying tribute to both the quality and the precision of the work done, and the data in the final paper," says Professor Crosier.

The protein identified, known as RASIP1 (for Ras-interacting protein 1), was found to have a role in strengthening the connections between the cells that make up the blood vessels.

This discovery may open up a new opportunity to treat diseases in which blood vessels become very leaky, such as diabetic eye disease, sepsis and troublesome fluid accumulation around tumours. It may be possible to develop small molecules that can enhance the activity of RASIP1, which could be useful for the treatment of these disorders.

Explore further: Gene links obesity and immunity

Related Stories

Gene links obesity and immunity

August 16, 2013
Auckland scientists have discovered a gene that links the immune system with obesity and potentially a new pathway to fight the worldwide obesity epidemic.

Researchers find protein that might be key to cutting cancer cells' blood supply

May 12, 2011
UT Southwestern Medical Center researchers have discovered a protein that guides blood vessel development and eventually might lead to a treatment to keep cancer cells from spreading.

Protein responsible for 'bad' blood vessel growth discovered

July 17, 2013
The discovery of a protein that encourages blood vessel growth, and especially 'bad' blood vessels – the kind that characterise diseases as diverse as cancer, age-related macular degeneration and rheumatoid arthritis – ...

Zebrafish help identify mutant gene in rare muscle disease

June 4, 2013
Zebrafish with very weak muscles helped scientists decode the elusive genetic mutation responsible for Native American myopathy, a rare, hereditary muscle disease that afflicts Native Americans in North Carolina.

Study unravels biological pathway that controls the leakiness of blood vessels

December 17, 2012
(Medical Xpress)—A research team led by scientists at Mayo Clinic in Florida have decoded the entire pathway that regulates leakiness of blood vessels—a condition that promotes a wide number of disorders, such as heart ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.