The brain's neural thermostat

October 16, 2013

As we learn and develop, our neurons change. They make new pathways and connections as our brain processes new information. In order to do this, individual neurons use an internal gauge to maintain a delicate balance that keeps our brains from becoming too excitable.

Scientists have long theorized a larger internal system monitors these individual gauges, like a neural thermostat, regulating average firing rates across the whole brain. Without this thermostat, they reasoned, our flexible would fire out of control, making bad connections or none at all. The result of a faulty neural thermostat could be an epileptic seizure, catatonia or autism.

This thermostat-like control of neuron firing has never been observed in a live, complex animal—until now.

Brandeis University scientists observed in vivo that neocortical neurons, cells that control higher functions such as sight, language and spatial reasoning, have a set average firing rate and return to this set point even during prolonged periods of sensory deprivation. Furthermore, the average firing rate is so well regulated by this neural thermostat that the rates do not change between periods of sleep and wakefulness.

The study, led by professor Gina Turrigiano in collaboration with the labs of Don Katz and Stephen Van Hooser, was the cover story in the Oct. 16 issue of the journal Neuron.

There is a time in early development across mammalian species when the brain does most of its wiring, affected largely by the environment in which the animal is being raised. This study demonstrated that during this period, neurons are constantly "self-tuning" to adjust for changes in environmental inputs, says postdoctoral fellow Keith Hengen, the paper's first author.

"If something is disturbed during that critical period of early childhood development, functioning neurons can self-adjust and return to their set-point average firing rate," Hengen says.

In this study, Turrigiano's team studied young rats that temporarily lost vision in one eye. In the first 48 hours, the neuronal firing rates dropped significantly from lack of external stimuli. But within the next 48 hours, those neurons rebounded back to their set-point rate—like a cold house heating up.

Soon, the neocortical neural firing rates were the same in both hemispheres, one with visual data and one without. Turrigiano's team studied the animals awake and asleep—and found that although the pattern of neural firing changed, the rate of firing stayed exactly the same.

This homeostatic mechanism keeps neurons on an even keel even as they change in response to learning, development and environmental factors.

"The homeostatic rule can control average activity across periods of sleep and wakefulness," Hengen said. "The other rules in the brain have to play out in the context of this tightly regulated system of locked-in average firing rates."

A demonstrated neural firing-rate set point opens up a whole new approach to thinking about neurological disorders such as epilepsy, in which the brain is too excited, and autism, in which the is not excited enough.

"If we can figure out how these set points are built, we may be able to adjust them and bring the brains of people suffering from such disorders back into balance," Turrigiano says.

Explore further: Neurons in the rat brain use a preexisting set of firing sequences to encode future navigational experiences

Related Stories

Neurons in the rat brain use a preexisting set of firing sequences to encode future navigational experiences

July 25, 2013
Specialized neurons called place cells, located in the hippocampus region of the brain, fire when an animal is in a particular location in its environment, and it is the linear sequence of their firing that encodes in the ...

Researchers image most of vertebrae brain at single cell level (w/ video)

March 20, 2013
(Medical Xpress)—Misha Ahrens and Philipp Keller, researchers with the Howard Hughes Medical Institute have succeeded in making a near real-time video of most of a zebrafish's brain showing individual neuron cells firing. ...

Mapping blank spots in the cheeseboard maze

March 22, 2013
(Medical Xpress)—During spatial learning, space is represented in the hippocampus through plastic changes in the connections between neurons. Jozsef Csicsvari and his collaborators investigate spatial learning in rats using ...

Common gene known to cause inherited autism now linked to specific behaviors

June 4, 2013
(Medical Xpress)—The genetic malady known as Fragile X syndrome is the most common cause of inherited autism and intellectual disability. Brain scientists know the gene defect that causes the syndrome and understand the ...

New theory of synapse formation in the brain

October 10, 2013
The human brain keeps changing throughout a person's lifetime. New connections are continually created while synapses that are no longer in use degenerate. To date, little is known about the mechanisms behind these processes. ...

Persistent sync for neurons: Rats' neurons reveal steady neural network coordination

November 7, 2012
(Phys.org)—A team of Brazilian physicists working with neuroscientists studying freely behaving rats have found that their neurons often act in precise coordination over time, in a study about to be published in the European ...

Recommended for you

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.