Neurons in the rat brain use a preexisting set of firing sequences to encode future navigational experiences

July 25, 2013, RIKEN
Figure 1: The firing of temporal sequences of place cells in rats during sleep encodes for future spatial trajectories. Credit: George Dragoi and Susumu Tonegawa, RIKEN–MIT Center for Neural Circuit Genetics

Specialized neurons called place cells, located in the hippocampus region of the brain, fire when an animal is in a particular location in its environment, and it is the linear sequence of their firing that encodes in the brain movement trajectories from one location to another. Building on previous work, George Dragoi and Susumu Tonegawa from the RIKEN–MIT Center for Neural Circuit Genetics have now shown that place cells have a preexisting inventory of firing sequences that they can use to encode multiple novel routes of exploration1.

Specific sequences of are known to encode spatial experiences, but it has been debated whether such sequences are formed during a new experience or preformed and adapted to specific experiences when required. Dragoi and Tonegawa recently showed that 'future' place cells fire in sequence while the animal is asleep, prior to experiencing a novel environment, and that animals use this preexisting neuronal firing pattern to rapidly learn how to navigate their surroundings.

To confirm and investigate this mechanism further, the researchers first recorded the of place cells in rats during one hour of sleep. Next, they monitored this activity during movement along a track that the rat had not previously explored, and later recorded it during movement along the same track with two additional lengths separated by right-angle turns. They then correlated the temporal pattern of place cell activity recorded during sleep with the spatial pattern of activity recorded while the animals were freely exploring the longer track.

The researchers found that the sequences of place cell activity were unique for each of the three lengths of the track and matched those recorded during sleep (Fig. 1). "We had observed the same sequences as independent clusters of correlated temporal sequences during the preceding sleep period," explains Dragoi. 

The results suggest that rapid encoding of particular trajectories within novel environments is achieved during exploration by selecting from a set of preexisting temporal sequences that fired during sleep. In other words, hippocampal place cells appear to be prearranged into sets of sequential firing cells that can be adapted rapidly to encode for multiple spatial that the animal could undertake in its surroundings. Based on their data, Dragoi and Tonegawa predict that the sets of hippocampal place cells could encode for at least 15 unique future spatial experiences. In addition, their findings could explain the role that the hippocampus plays in humans in imagining future encounters within our own complex environment.

Explore further: Mapping blank spots in the cheeseboard maze

More information: Proceedings of the National Academy of Sciences USA 110, 9100–9105 (2013). DOI: 10.1073/pnas.1306031110

Related Stories

Mapping blank spots in the cheeseboard maze

March 22, 2013
(Medical Xpress)—During spatial learning, space is represented in the hippocampus through plastic changes in the connections between neurons. Jozsef Csicsvari and his collaborators investigate spatial learning in rats using ...

'Time cells' bridge the gap in memories of event sequences

August 24, 2011
The hippocampus is a brain structure that plays a major role in the process of memory formation. It is not entirely clear how the hippocampus manages to string together events that are part of the same experience but are ...

Fluctuations in size of brain waves contribute to information processing

February 8, 2013
Cyclical variations in the size of brain wave rhythms may participate in the encoding of information by the brain, according to a new study led by Colin Molter of the Neuroinformatics Japan Center, RIKEN Brain Science Institute.

Going places: Rat brain 'GPS' maps routes to rewards

April 17, 2013
While studying rats' ability to navigate familiar territory, Johns Hopkins scientists found that one particular brain structure uses remembered spatial information to imagine routes the rats then follow. Their discovery has ...

Recommended for you

Silence is golden when it comes to how our brains work

June 18, 2018
It's the comparative silence between the firing spikes of neurons that tells what they are really up to, scientists report.

Observing brain plasticity during cello training

June 15, 2018
Music acquisition provides an excellent model of neural plasticity, and has become a hot research subject in neurology. Music performance provides an unmatched array of neural complexities revealing how neural networks are ...

New discovery about the brain's water system may prove beneficial in stroke

June 15, 2018
Water is transported from the blood into the brain via an ion transporter, according to a new study on mice conducted at the University of Copenhagen. If the mechanism can be targeted with medicine, it may prove relevant ...

Study shows how intensive instruction changes brain circuitry in struggling readers

June 14, 2018
The early years are when the brain develops the most, forming neural connections that pave the way for how a child—and the eventual adult—will express feelings, embark on a task, and learn new skills and concepts.

When emotional memories intrude, focusing on context could help, study finds

June 14, 2018
When negative memories intrude, focusing on the contextual details of the incident rather than the emotional fallout could help minimize cognitive disruption and redirect the brain's resources to the task at hand, suggests ...

The neurons that rewrite traumatic memories

June 14, 2018
Memories of traumatic experiences can lead to mental health issues such as post-traumatic stress disorder (PTSD), which can destroy a person's life. It is currently estimated that almost a third of all people will suffer ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
not rated yet Jul 26, 2013
Cool, a basis set of spatial percepts, that's good engineering :)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.