How past experiences inform future choices

December 22, 2010 by Deborah Halber, Massachusetts Institute of Technology

Researchers at MIT's Picower Institute for Learning and Memory report for the first time how animals' knowledge obtained through past experiences can subconsciously influence their behavior in new situations.

The work, which sheds light on how our past experiences inform our future choices, will be reported on Dec. 22 in an advance online publication of Nature.

Previous work has shown that when a mouse explores a new space, in its , the center of and , fire sequentially like gunpowder igniting a makeshift fuse. Individual neurons called place cells fire in a specific pattern that mirrors the animal's movement through space. By looking at the time-specific patterns and sequences recorded from the firing cells, researchers can tell which part of the maze the animal was running at the time.

In the current work, research scientist George Dragoi and Susumu Tonegawa, Picower Professor of Biology and and director of the RIKEN-MIT Center for Neural Circuit Genetics, found that some of the sequences of place cells in mice' brains that fired during a novel spatial experience such as running a new maze had already occurred while the animals rested before the experience.

"These findings explain at the neuronal circuit level the phenomenon through which prior knowledge influences our decisions when we encounter a new situation," Dragoi said. "This explains in part why different individuals form different representations and respond differently when faced with the same situation."

When a mouse pauses and rests while running a maze, it mentally replays its experience. Its neurons fire in the same pattern of activity that occurred while it was running. Unlike this version of mental replay, the phenomenon found by the MIT researchers is called preplay. It occurred before the animal even started the new maze.

"These results suggest that internal neuronal dynamics during resting organize cells within the hippocampus into time-based sequences that help encode a related experience occurring in the future," Tonegawa said.

"Previous work largely ignored internal neuronal activities representing prior knowledge that occurred before a new event, space or situation. Our work shows that an individual's access to prior knowledge can help predict a response to a new but similar experience," he said.

More information: "Preplay of future place cell sequences by hippocampal cellular assemblies," by George Dragoi and Susumu Tonegawa. Nature, 22 December, 2010.

Related Stories

Recommended for you

Brainwaves show how exercising to music bends your mind

February 18, 2018
Headphones are a standard sight in gyms and we've long known research shows listening to tunes can be a game-changer for your run or workout.

Newborn babies who suffered stroke regain language function in opposite side of brain

February 17, 2018
It's not rare that a baby experiences a stroke around the time it is born. Birth is hard on the brain, as is the change in blood circulation from the mother to the neonate. At least 1 in 4,000 babies are affected shortly ...

To sleep, perchance to forget

February 17, 2018
The debate in sleep science has gone on for a generation. People and other animals sicken and die if they are deprived of sleep, but why is sleep so essential?

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

Brain-machine interface study suggests how brains prepare for action

February 16, 2018
Somewhere right now in Pyeongchang, South Korea, an Olympic skier is thinking through the twists and spins she'll make in the aerial competition, a speed skater is visualizing how he'll sneak past a competitor on the inside ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.