Circadian rhythms in skin stem cells protect us against UV rays

October 10, 2013, Cell Press

Human skin must cope with UV radiation from the sun and other harmful environmental factors that fluctuate in a circadian manner. A study published by Cell Press on October 10th in the journal Cell Stem Cell has revealed that human skin stem cells deal with these cyclical threats by carrying out different functions depending on the time of day. By activating genes involved in UV protection during the day, these cells protect themselves against radiation-induced DNA damage. The findings could pave the way for new strategies to prevent premature aging and cancer in humans.

"Our study shows that stem cells posses an internal clock that allows them to very accurately know the time of day and helps them know when it is best to perform the correct function," says study author Salvador Aznar Benitah an ICREA Research Professor who developed this project at the Centre for Genomic Regulation (CRG, Barcelona), and who has recently moved his lab to the Institute for Research in Biomedicine (IRB Barcelona). "This is important because it seems that tissues need an accurate internal clock to remain healthy."

A variety of cells in our body have internal clocks that help them perform certain functions depending on the time of day, and skin cells as well as some stem cells exhibit circadian behaviors. Benitah and his collaborators previously found that animals lacking normal circadian rhythms in skin stem cells age prematurely, suggesting that these cyclical patterns can protect against cellular damage. But until now, it has not been clear how affect the functions of human skin stem cells.

To address this question, Benitah teamed up with his collaborators Luis Serrano and Ben Lehner of the Centre for Genomic Regulation. They found that distinct sets of genes in human skin stem cells show peak activity at different times of day. Genes involved in UV protection become most active during the daytime to guard these cells while they proliferate—that is, when they duplicate their DNA and are more susceptible to radiation-induced damage.

"We know that the clock is gradually disrupted in aged mice and humans, and we know that preventing from accurately knowing the time of the day reduces their regenerative capacity," Benitah says. "Our current efforts lie in trying to identify the causes underlying the disruption of the clock of human and hopefully find means to prevent or delay it."

Explore further: Research team shows skin stem cells run by circadian clock

More information: Cell Stem Cell, Janich et al.: "Human epidermal stem cell function is regulated by circadian oscillations." dx.doi.org/10.1016/j.stem.2013.09.004

Related Stories

Research team shows skin stem cells run by circadian clock

November 10, 2011
(PhysOrg.com) -- Most everyone has heard of the circadian rhythm or the internal clock that people have that tells them when to do things, such as go to sleep. In fact, researchers have actually located where this “clock” ...

Stem cell study could aid quest to combat range of diseases

June 3, 2013
Scientists have taken a vital step forward in understanding how cells from skin tissue can be reprogrammed to become stem cells.

Shining stem cells reveals how our skin is maintained

August 15, 2013
All organs in our body rely on stem cells in order to maintain their function. The skin is our largest organ and forms a shield against the environment. New research results from BRIC, University of Copenhagen and Cambridge ...

Researchers unveil method for creating 're-specified' stem cells for disease modeling

October 3, 2013
In a paper in Cell Stem Cell, a team led by researchers in the Boston Children's Hospital's Stem Cell Transplantation Program reports a new approach for turning induced pluripotent stem cells (iPSCs) into hematopoietic stem ...

Scientists identify key regulator controlling formation of blood-forming stem cells

September 26, 2013
Stem cell scientists have moved one step closer to producing blood-forming stem cells in a Petri dish by identifying a key regulator controlling their formation in the early embryo, shows research published online today in ...

Healing by the clock: In fruit flies, intestinal stem-cell regeneration fluctuates with the time of day

April 11, 2013
Circadian rhythms keep time for all living things, from regulating when plants open their flowers to foiling people when they try to beat jet lag. Day-night cycles are controlled through ancient biological mechanisms, evolutionarily ...

Recommended for you

Japanese team creates human oogonia using human stem cells in artificial mouse ovaries

September 21, 2018
A team of researchers with members from several institutions in Japan has successfully generated human oogonia inside of artificial mouse ovaries using human stem cells. In their paper published in the journal Science, the ...

A new approach to developing a vaccine against vivax malaria

September 21, 2018
A novel study reports an innovative approach for developing a vaccine against Plasmodium vivax, the most prevalent human malaria parasite outside sub-Saharan Africa. The study led by Hernando A. del Portillo and Carmen Fernandez-Becerra, ...

A Trojan Horse delivery for treating a rare, potentially deadly, blood-clotting disorder

September 21, 2018
In proof-of-concept experiments, University of Alabama at Birmingham researchers have highlighted a potential therapy for a rare but potentially deadly blood-clotting disorder, TTP. The researchers deliver this therapeutic ...

Researchers explore how changes in diet alter microbiome in artificial intestine

September 21, 2018
Using an artificial intestine they created, researchers have shown that the microbiome can quickly adapt from the bacterial equivalent of a typical western diet to one composed exclusively of dietary fats. That adaptation ...

Study identifies stem cell that gives rise to new bone and cartilage in humans

September 20, 2018
A decade-long effort led by Stanford University School of Medicine scientists has been rewarded with the identification of the human skeletal stem cell.

Scientists grow human esophagus in lab

September 20, 2018
Scientists working to bioengineer the entire human gastrointestinal system in a laboratory now report using pluripotent stem cells to grow human esophageal organoids.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.