Complex diseases traced to gene copy numbers

October 17, 2013
An embryonic zebrafish with a copy-number error in its genes (at right) shows a characteristic eye defect called coloboma. An unaffected fish is at left. Credit: Christelle Golzio, Duke University

Duke researchers have connected very rare and precise duplications and deletions in the human genome to their complex disease consequences by duplicating them in zebrafish.

The findings are based on detailed studies of five people missing a small fragment of their and suffering from a mysterious syndrome of craniofacial features, visual anomalies and developmental delays.

When those patient observations were coupled to analyses of the anatomical defects in genetically altered zebrafish embryos, the researchers were able to identify the contribution specific genes made to the pathology, demonstrating a powerful tool that can now be applied to unraveling many other complex and rare human genetic conditions.

The findings are broadly important for human genetic disorders because copy-number variants (CNVs)—fragments of the genome that are either missing or existing in extra copies—are quite common in the genome. But their precise contribution to diseases has been difficult to determine because CNVs can affect the function of many genes simultaneously.

"Because a CNV can perturb many genes, it is difficult to know which of them is responsible," said Nicholas Katsanis, a professor of cell biology who directs the Center for Human Disease Modeling and the Task Force for Neonatal Genomics at Duke University.

Last year, Katsanis and his colleagues found that they could trace recurrent copy-number variants and dissect the consequences of each perturbed gene to particular features in patients. The new study goes one step further by showing that they can also do this in more challenging cases, when CNVs differ in size from one individual to the next. In this case, "each person has his or her own private deletion or duplication," he said, with the potential to affect a different number of genes.

The researchers showed that partially overlapping microdeletions found in the human patients include a region that contains three genes. By manipulating those genes in zebrafish, first one at a time and then in combination, they were able to connect the genes to specific features of the human syndrome. One of the study's first authors, post-doctoral researcher Christelle Golzio, recalled what it was like to see the characteristics of those human patients reflected in their laboratory fish for the first time.

"The zebrafish had coloboma," she said, referring to holes in the iris or other parts of of the eye seen in these patients. "It was clear cut." Similar to the patients with the deletions, the zebrafish embryos also had kidney defects, small heads and defects in the development of the skeleton of the face.

"This is a faster, cheaper, more efficient method to study and decipher copy-number variants, and the model looks pretty robust in terms of recapitulating what the physicians observe in people," Golzio said.

The findings also show just how complicated the of copy-number variants can be. In some instances, the abnormalities seen in both and the fish were tied to copy number changes to individual , as that gene's "dosage" varied. At the same time, other characteristics were only observed when those genetic aberrations were combined, a pattern that would be nearly impossible to see in studies of humans themselves.

In principle, the researchers say they can now examine the role of copy-number variants in any human syndrome, so long as the condition is associated with features that are measurable in the fish.

"We will need to study lots of CNVs to find the edges of our capabilities," Katsanis said. "As we add this layer of dissection and interpretation, we will have prediction, diagnosis and the beginnings of biological understanding."

Explore further: Zebrafish study isolates gene related to autism, schizophrenia and obesity

More information: "SCRIB and PUF60 Are Primary Drivers of the Multisystemic Phenotypes of the 8q23.4 Copy-Number Variant," A Dauber, C. Golzio et al. American Journal of Human Genetics, November 7, 2013.

Related Stories

Zebrafish study isolates gene related to autism, schizophrenia and obesity

May 16, 2012
What can a fish tell us about human brain development? Researchers at Duke University Medical Center transplanted a set of human genes into a zebrafish and then used it to identify genes responsible for head size at birth.

Is short stature associated with a 'shortage' of genes?

November 23, 2011
New research sifts through the entire genome of thousands of human subjects to look for genetic variation associated with height. The results of the study, published by Cell Press in the December issue of the American Journal ...

Completion of the zebrafish reference genome yields strong comparisons with the human genome

April 17, 2013
Researchers demonstrate today that 70 per cent of protein-coding human genes are related to genes found in the zebrafish and that 84 per cent of genes known to be associated with human disease have a zebrafish counterpart. ...

Gene variants found to affect human lifespan

February 4, 2013
By broadly comparing the DNA of children to that of elderly people, gene researchers have identified gene variants that influence lifespan, either by raising disease risk or by providing protection from disease.

Whole DNA sequencing reveals mutations, new gene for blinding disease

September 16, 2013
Retinitis pigmentosa (RP) is a genetic disease that causes progressive loss of vision and is caused by mutations in more than 50 genes. Conventional methods for identification of both RP mutations and novel RP genes involve ...

Examining function of all genes in the zebrafish genome to benefit human health

April 17, 2013
Equipped with the zebrafish genome, researchers have designed a method to assay the function of each and every gene and to explore the effects genetic variation has on zebrafish. So far the team has generated one or more ...

Recommended for you

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Evolved masculine and feminine behaviors can be inherited from social environment

August 15, 2017
The different ways men and women behave, passed down from generation to generation, can be inherited from our social environment - not just from genes, experts have suggested.

Attitudes on human genome editing vary, but all agree conversation is necessary

August 10, 2017
In early August 2017, an international team of scientists announced they had successfully edited the DNA of human embryos. As people process the political, moral and regulatory issues of the technology—which nudges us closer ...

Two genes help older brain gain new cells

August 10, 2017
Two genes act as molecular midwives to the birth of neurons in adult mammals and when inactivated in mice cause symptoms of Fragile X Syndrome, a major cause of mental retardation, a new Yale University study has shown.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.