Drowsy Drosophila shed light on sleep and hunger

October 3, 2013, Brandeis University
This is an image of Drosophila (fruit flies). Credit: Mike Lovett

Why does hunger keep us awake and a full belly make us tired? Why do people with sleep disorders such as insomnia often binge eat late at night? What can sleep patterns tell us about obesity?

Sleep, hunger and metabolism are closely related, but scientists are still struggling to understand how they interact. Now, Brandeis University researchers have discovered a function in a molecule in that may provide insight into the complicated relationship between and food.

In the October issue of the journal Neuron, Brandeis scientists report that sNPF, a neuropeptide long known to regulate food intake and metabolism, is also an important component in regulating and promoting sleep. When researchers activated sNPF in fruit flies, the insects fell asleep almost immediately, awaking only long enough to eat before nodding off again. The flies were so sleepy that once they found a food source, they slept right on top of it for days—like falling asleep on a giant hamburger bun and waking up long enough to take a few nibbles before falling back to sleep.

When researchers returned sNPF functions to normal, the flies resumed their normal level of activity, leaving behind their couch potato ways.

The researchers, led by professor of biology Leslie Griffith, concluded that sNPF has an important regulatory function in sleep in addition to its previously known function coordinating behaviors such as eating and metabolism.

"This paper provides a nice bridge between feeding behavior and sleep behavior with just a single molecule," says Nathan Donelson, a post doctoral fellow in Griffith's lab and one of the study's lead authors.

Neurons use neuropeptides to communicate a range of brain functions including learning, , memory and social behaviors. In humans, Neuropeptide Y functions similarly to sNPF and has been studied as a possible drug target for obesity treatment.

But scientists don't fully understand how regulating neuropeptide function at specific times and in specific cells affects sleeping and eating. By studying sNPF in fruit flies, scientists can learn which cells, neurotransmitters and genes are involved in eating and sleeping; what processes turn on and inhibit the behaviors, and how sleep cells are relevant to hunger drive.

"Our paper makes a significant step into tying all these things together," says Donelson, "and that is extremely important down the road to our understanding of human health."

Explore further: Sleeping too little—or too much—associated with heart disease, diabetes, obesity

Related Stories

Sleeping too little—or too much—associated with heart disease, diabetes, obesity

October 1, 2013
A new study by the Centers for Disease Control and Prevention (CDC) links too little sleep (six hours or less) and too much sleep (10 or more hours) with chronic diseases—including coronary heart disease, diabetes, anxiety ...

Sleep deprivation increases food purchasing the next day

September 5, 2013
People who were deprived of one night's sleep purchased more calories and grams of food in a mock supermarket on the following day in a new study published in the journal Obesity, the official journal of The Obesity Society. ...

Unusual comparison nets new sleep loss marker

May 3, 2013
(Medical Xpress)—For years, Paul Shaw, PhD, a researcher at Washington University School of Medicine in St. Louis, has used what he learns in fruit flies to look for markers of sleep loss in humans.

Recommended for you

Electrical implant reduces 'invisible' symptoms of man's spinal cord injury

February 19, 2018
An experimental treatment that sends electrical currents through the spinal cord has improved "invisible" yet debilitating side effects for a B.C. man with a spinal cord injury.

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

Brain-machine interface study suggests how brains prepare for action

February 16, 2018
Somewhere right now in Pyeongchang, South Korea, an Olympic skier is thinking through the twists and spins she'll make in the aerial competition, a speed skater is visualizing how he'll sneak past a competitor on the inside ...

Humans blink strategically in response to environmental demands

February 16, 2018
If a brief event in our surroundings is about to happen, it is probably better not to blink during that moment. A team of researchers at the Centre for Cognitive Science from Technische Universität Darmstadt published a ...

Model for producing brain's 'helper cells' could lead to treatments for Alzheimer's

February 16, 2018
A Swedish research team has published a new protocol with the potential for industrial-scale production of the brain helper cells known as astrocytes. Their work could help medical science develop treatments for such diseases ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.