Drowsy Drosophila shed light on sleep and hunger

October 3, 2013
This is an image of Drosophila (fruit flies). Credit: Mike Lovett

Why does hunger keep us awake and a full belly make us tired? Why do people with sleep disorders such as insomnia often binge eat late at night? What can sleep patterns tell us about obesity?

Sleep, hunger and metabolism are closely related, but scientists are still struggling to understand how they interact. Now, Brandeis University researchers have discovered a function in a molecule in that may provide insight into the complicated relationship between and food.

In the October issue of the journal Neuron, Brandeis scientists report that sNPF, a neuropeptide long known to regulate food intake and metabolism, is also an important component in regulating and promoting sleep. When researchers activated sNPF in fruit flies, the insects fell asleep almost immediately, awaking only long enough to eat before nodding off again. The flies were so sleepy that once they found a food source, they slept right on top of it for days—like falling asleep on a giant hamburger bun and waking up long enough to take a few nibbles before falling back to sleep.

When researchers returned sNPF functions to normal, the flies resumed their normal level of activity, leaving behind their couch potato ways.

The researchers, led by professor of biology Leslie Griffith, concluded that sNPF has an important regulatory function in sleep in addition to its previously known function coordinating behaviors such as eating and metabolism.

"This paper provides a nice bridge between feeding behavior and sleep behavior with just a single molecule," says Nathan Donelson, a post doctoral fellow in Griffith's lab and one of the study's lead authors.

Neurons use neuropeptides to communicate a range of brain functions including learning, , memory and social behaviors. In humans, Neuropeptide Y functions similarly to sNPF and has been studied as a possible drug target for obesity treatment.

But scientists don't fully understand how regulating neuropeptide function at specific times and in specific cells affects sleeping and eating. By studying sNPF in fruit flies, scientists can learn which cells, neurotransmitters and genes are involved in eating and sleeping; what processes turn on and inhibit the behaviors, and how sleep cells are relevant to hunger drive.

"Our paper makes a significant step into tying all these things together," says Donelson, "and that is extremely important down the road to our understanding of human health."

Explore further: Sleeping too little—or too much—associated with heart disease, diabetes, obesity

Related Stories

Sleeping too little—or too much—associated with heart disease, diabetes, obesity

October 1, 2013
A new study by the Centers for Disease Control and Prevention (CDC) links too little sleep (six hours or less) and too much sleep (10 or more hours) with chronic diseases—including coronary heart disease, diabetes, anxiety ...

Sleep deprivation increases food purchasing the next day

September 5, 2013
People who were deprived of one night's sleep purchased more calories and grams of food in a mock supermarket on the following day in a new study published in the journal Obesity, the official journal of The Obesity Society. ...

Unusual comparison nets new sleep loss marker

May 3, 2013
(Medical Xpress)—For years, Paul Shaw, PhD, a researcher at Washington University School of Medicine in St. Louis, has used what he learns in fruit flies to look for markers of sleep loss in humans.

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.