Scientists shed light on the brain mechanisms behind a debilitating sleep disorder

October 10, 2013

Normally muscles contract in order to support the body, but in a rare condition known as cataplexy the body's muscles "fall asleep" and become involuntarily paralyzed. Cataplexy is incapacitating because it leaves the affected individual awake, but either fully or partially paralyzed. It is one of the bizarre symptoms of the sleep disorder called narcolepsy.

"Cataplexy is characterized by during cognitive awareness, but we didn't understand how this happened until now, said John Peever of the University of Toronto's Department of Cell & Systems Biology. "We have shown that the neuro-degeneration of the brain cells that synthesize the chemical hypocretin causes the noradrenaline system to malfunction. When the norandrenaline system stops working properly, it fails to keep the motor and cognitive systems coupled. This results in cataplexy – the muscles fall asleep but the brain stays awake."

Peever and Christian Burgess, also of Cell & Systems Biology used hypocretin-knockout mice (mice that experience cataplexy), to demonstate that a dysfunctional relationship between the noradrenaline system and the hypocretin-producing system is behind cataplexy. The research was recently published in the journal Current Biology in September.

The scientists first established that mice experienced sudden loss of muscle tone during cataplectic episodes. They then administered drugs to systematically inhibit or activate a particular subset of adrenergic receptors, the targets of noradrenaline. They were able to reduce the incidence of cataplexy by 90 per cent by activating noradrenaline receptors. In contrast, they found that inhibiting the same receptors increased the incidence of cataplexy by 92 per cent. Their next step was to successfully link how these changes affect the brain cells that directly control muscles.

They found that noradrenaline is responsible for keeping the (motoneurons) and muscles active. But during cataplexy when muscle tone falls, noradrenaline levels disappear. This forces the muscle to relax and causes paralysis during cataplexy. Peever and Burgess found that restoring noradrenaline pre-empted cataplexy, confirming that the system plays a key role.

Explore further: Researchers find new clue to cause of human narcolepsy

Related Stories

Researchers find new clue to cause of human narcolepsy

July 3, 2013
(Medical Xpress)—In 2000, researchers at the UCLA Center for Sleep Research published findings showing that people suffering from narcolepsy, a disorder characterized by uncontrollable periods of deep sleep, had 90 percent ...

Study identifies how muscles are paralyzed during sleep

July 11, 2012
Two powerful brain chemical systems work together to paralyze skeletal muscles during rapid eye movement (REM) sleep, according to new research in the July 11 issue of The Journal of Neuroscience. The finding may help scientists ...

Narcolepsy study finds surprising increase in neurons that produce histamine

June 3, 2013
A new study provides surprising evidence that people with narcolepsy have an increased number of neurons that produce histamine, suggesting that histamine signaling may be a novel therapeutic target for this potentially disabling ...

Mutation links inherited narcolepsy with multiple neuropsychiatric disorders

September 8, 2011
Narcolepsy is a rare disorder characterized by an excessive urge to sleep at inappropriate times and places. Narcoleptics are also often subject to "cataplexy," a sudden muscle weakness that is triggered by strong emotions. ...

Recommended for you

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.