Study finds combo of plant nutrients kills breast cancer cells

November 22, 2013

A study led by Madhwa Raj, PhD, Research Professor in Obstetrics and Gynecology at LSU Health Sciences Center New Orleans and its Stanley S. Scott Cancer Center, has found that a super cocktail of six natural compounds in vegetables, fruits, spices and plant roots killed 100% of sample breast cancer cells without toxic side effects on normal cells. The results, which also revealed potential treatment target genes, are published in the November 2013 issue of The Journal of Cancer.

"One of the primary causes of both the recurrence of breast cancer and deaths is a small group of cancer stem cells that evade therapy," notes Dr. Raj. "These often multi-drug-resistant cells have the ability to generate new tumors, so it is critically important to develop new approaches to more effective and safer treatment or prevention of breast cancer."

The research team tested ten known protective chemical nutrients found in foods like broccoli, grapes, apples, tofu, and turmeric root (a spice used in Indian curry) before settling upon six – Curcumin known as tumeric, Isoflavone from soybeans, Indo-3-Carbinol from cruciferous plants, C-phycocyanin from spirulina, Reservatrol from grapes, and Quercetin, a flavonoid present in fruits, vegetables, and tea. The researchers administered these six at bioavailable levels to both breast cancer and control cells. They tested the compounds individually and in combination. They found that the compounds were ineffective individually. When combined, though, the super cocktail suppressed breast cancer cell growth by more than 80%, inhibited migration and invasion, caused cell cycle arrest, and triggered the process leading to cell death resulting in the death of 100% of the breast cancer cells in the sample. The researchers observed no harmful effects on the control cells. Further analysis also identified several key genes, which could serve as markers to follow the progress of therapy.

Although the cocktail was not tested against BRCA1 and BRAC2, previous studies have shown that they are molecular targets of four of the six compounds. The researchers also earlier demonstrated that two of the compounds synergize effectively to kill ovarian cancer .

According to the National Cancer Institute's SEER Program, which includes data from LSU Health Sciences Center New Orleans, breast cancer is the second most common cancer with 232,340 new cases estimated this year and 39,620 deaths. There are an estimated 2,829,041 women currently living with in the United States.

Explore further: Study finds new drug target for metastatic breast cancer

Related Stories

Study finds new drug target for metastatic breast cancer

April 11, 2013
Research led by Dr. Suresh Alahari, Professor of Biochemistry and Molecular Biology at LSU Health Sciences Center New Orleans, is the first to report that two specific tumor suppressor genes work in concert to inhibit the ...

Mutations of immune system found in breast cancers

November 18, 2013
Mutations in the genes that defend the body against cancer-related viruses and other infections may play a larger role in breast cancer than previously thought, according to a study at the University of Illinois at Chicago.

Enhanced luminal breast tumor response to antiestrogen therapy

September 3, 2013
Breast cancer can be divided into 4 major subtypes using molecular and genetic information from the tumors. Each subtype is associated with different prognosis and should be taken into consideration when making treatment ...

Study provides new drug target for Her-2 related breast cancer

January 22, 2013
Research led by Dr. Suresh Alahari, the Fred Brazda Professor of Biochemistry and Molecular Biology at LSU Health Sciences Center New Orleans and its Stanley S. Scott Cancer Center, details exactly how the Her2 cancer gene ...

Lifestyle factors could put college-age women at higher risk of breast cancer

October 28, 2013
Breast cancer prevention needs to become a shared conversation among women of all ages as it can strike at any age, and is generally more aggressive when diagnosed in women under the age of 50. With hopes to spark that discussion, ...

Recommended for you

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Combining CAR T cells with existing immunotherapies may overcome resistance in glioblastomas

July 19, 2017
Genetically modified "hunter" T cells successfully migrated to and penetrated a deadly type of brain tumor known as glioblastoma (GBM) in a clinical trial of the new therapy, but the cells triggered an immunosuppressive tumor ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.