HIV genotype unneeded in new treatment computer modeling

November 26, 2013, RDI

New computer models described today in the Journal of Antimicrobial Chemotherapy predict how patients whose HIV therapy is failing will respond to any new combination of drugs, without the need for an HIV genotype: a test used in wealthy countries to read the genetic code of the virus and help select drugs to which the virus is sensitive.1 In fact, the models were significantly more accurate predictors of treatment response than the genotype.

The HIV Resistance Response Database Initiative (RDI) developed these latest models specifically for use in the many settings where genotyping is unaffordable. They estimate the probability that any combination of HIV drugs will reduce the amount of virus to undetectable levels in patients whose current therapy is failing. They were trained with data from tens of thousands of patients in clinics all over the world, including for the first time, patients from Southern Africa. They were around 80% accurate, which is significantly better than the 57% accuracy achieved by genotyping.

"This study and these models are proof of principle that this could be a very helpful approach for selecting effective therapy in highly resource-constrained settings, such as Southern Africa," commented Professor Robin Wood, Head of the Desmond Tutu HIV Centre, University of Cape Town, South Africa and a co-author on the paper." As more of our patients fail first and even second line therapy, it is critical to optimise the selection from our limited range of drugs to achieve maximum suppression of the virus and this system could be very useful".

The new models are now available to be used by healthcare professionals as part of the RDI's HIV Treatment Response Prediction System (HIV-TRePS), which is freely available online at www.hivrdi.org/treps. The system also enables users to enter the costs of the drugs in their clinic and so model both the cost and the effectiveness of various options. A previous pilot study using data from an HIV clinic in India indicated that the system could identify more effective and less costly combinations of drugs that those actually used in the clinic.2

"Currently, most HIV patients in resource-limited settings are treated according to WHO public health guidelines that offer very limited treatment options", explained Dr Hugo Tempelman, Clinical Director of the Ndlovu Care Group, Elandsdoorn, South Africa and co-author on the paper. "The HIV-TRePS system, incorporating these models, enables doctors to tailor the HIV treatment based on the cost and predicted effectiveness of the treatment. What is wonderful is that HIV-TRePS provides us with high predictive value at no cost."

The data required by the system for its predictions includes a measure of the amount of virus in the patient's bloodstream (the viral load), a test that is not widely used in resource-limited settings. However, the potential cost savings offered by the system are likely to cover the costs of viral load testing, many times over. Moreover, monitoring of HIV therapy is now recommended by the World Health Organisation in all settings and initiatives are underway to fund it, including the formation of the Load Zero Foundation, formed specifically with this goal.3

"We are very encouraged by the results with these models." Commented Dr Andrew Revell, Executive Director of the RDI. "They show that not having access to genotyping in resource-limited settings need not be barrier to providing individualised, optimised HIV drug therapy".

The RDI is an independent, not-for-profit international research collaboration set-up in 2002 with the mission to improve the clinical management of HIV infection through the application of bioinformatics to HIV drug resistance and treatment outcome data. Over the 10 years since its inception, the RDI has worked with many of the leading clinicians and scientists in the world to develop the world's largest database of HIV drug resistance and treatment outcome data, containing information from approximately 100,000 patients in more than 30 countries.

HIV-TRePS is an experimental system intended for research use only. The predictions of the system are not intended to replace professional medical care and attention by a qualified medical practitioner and consequently the RDI does not accept any responsibility for the selection of drugs, the patient's response to treatment or differences between the predictions and ' responses.

Explore further: Computer models predict how patients will respond to HIV drugs

More information: 1. Revell AD, Wang D, Wood R et al. An update to the HIV-TRePS system: The development of new computational models that do not require a genotype to predict HIV treatment outcomes. J Antimicrob Chemother 2013; DOI: 10.1093/jac/dkt041

2. Revell AD, Alvarez-Uria G, Wang D, Pozniak A, Montaner JSG, Lane HC, Larder BA. Potential Impact of a Free Online HIV Treatment Response Prediction System for Reducing Virological Failures and Drug Costs after Antiretroviral Therapy Failure in a Resource-Limited Setting. BioMed Res Int 2013; DOI: 10.1155/2013/579741.

3. World Health Organisation. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: Recommendations for a public health approach. WHO; Geneva: 2013.

jac.oxfordjournals.org/cgi/con … Qmob954k&keytype=ref

Related Stories

Computer models predict how patients will respond to HIV drugs

March 13, 2013
Results of a study published online in the Journal of Antimicrobial Chemotherapy today (Thursday), demonstrate that computer models can predict how HIV patients whose drug therapy is failing will respond to a new treatment. ...

CD4 count is non-inferior to viral load for treatment switching in adults with HIV

August 6, 2013
For adults infected with HIV in Thailand a monitoring strategy based on CD4 count (a type of white blood cell) is non-inferior to the recommended monitoring strategy measuring the amount of HIV virus in a patient's blood, ...

Predicting treatment response more accurately

September 2, 2013
The HI virus is feared, not least, because of its great adaptability. If the virus mutates at precisely the point targeted by a drug, it is able to neutralise the attack and the treatment fails. To minimise these viral defence ...

Protease inhibitor resistance involves multiple stages of the HIV-1 life cycle

August 27, 2013
HIV-1 protease inhibitors are very effective antiviral drugs. These drugs target HIV-1 proteases, which are required for viral replication. Despite the success of protease inhibitors for suppressing HIV-1, some patients do ...

Scientists find the invisibility cloak that shields HIV-1 from the immune system

November 21, 2013
Of the two major types of HIV, only one, HIV-1, typically causes AIDS in infected people who don't receive treatment. A study published by Cell Press November 21st in the journal Immunity reveals how HIV-1 escapes detection ...

Risk of HIV treatment failure present even in those with low viral load

November 26, 2013
People with human immunodeficiency virus (HIV) run a higher risk of virologic failure than previously thought, even when their number of RNA copies of the retrovirus per millilitre of blood is slightly above the detection ...

Recommended for you

HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

January 18, 2018
A first-of-its-kind study has found that the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is higher in the vaginal tract than in the blood stream during early infection. This finding, published in PLOS ...

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.