New method to increase survival in sepsis discovered

November 25, 2013 by Julie Cohen, University of California - Santa Barbara
Histopathological analyses of liver and spleen tissue 48 hours after infection exhibited fibrin thrombi and empty vessels (open arrows) indicative of thromboembolic occlusions. Functioning blood vessels containing red blood cells are also denoted (closed arrows). Pyknotic bodies indicating cell death are marked (asterisks). Credit: UCSB

Sepsis, the body's response to severe infections, kills more people than breast cancer, prostate cancer and HIV/AIDS combined. On average, 30 percent of those diagnosed with sepsis die.

A new study conducted by Jamey Marth, director of UC Santa Barbara's Center for Nanomedicine and professor of the Sanford-Burnham Medical Research Institute, reports a new method to increase survival in sepsis. The results appear today in the Proceedings of the National Academy of Sciences.

Building on earlier work in which Marth's team revealed the biological purpose of the Ashwell-Morell receptor (AMR) in the liver, the new discovery not only describes the AMR's protective mechanism, but also outlines a way to leverage it for therapeutic use. Sepsis often triggers widespread blood coagulation and thrombosis, which can lead to organ failure and death.

The researchers found that the AMR protects the host by the rapid removal of the prothrombotic components normally present in the bloodstream, including platelets and specific coagulation factors that contribute to the formation of blood clots. The study elucidates this mechanism of AMR function in mitigating the lethal effects of excessive and thrombosis in sepsis.

The key is neuraminidase, an enzyme that is present in many pathogenic microorganisms, such as Streptococcus pneumoniae, the bacteria used in this study, which remains one of the top five causes of death worldwide. Pathogens use neuraminidase to get into cells, but once the pathogen enters the bloodstream, the enzyme then remodels the surface of platelets and other glycoproteins in circulation. This remodeling signals the AMR to remove those platelets and coagulation factors before they have a chance to contribute to the lethal coagulopathy of sepsis.

"It's a highly conserved protective mechanism never before identified," said Marth, who is also Carbon Professor of Biochemistry and Molecular Biology and Mellichamp Professor of Systems Biology at UCSB. "The host has evolved this protective mechanism over millions of years as a way to compensate for the lethal impact of the pathogen on our coagulation system."

The scientists wondered what would happen if they could pre-activate and augment AMR function in the early phases of sepsis. To answer that question, they infected mice with Streptococcus pneumoniae and then gave them a single dose of neuraminidase. "We were able to increase survival twofold," said Marth. "It's remarkable, and because we see the same mechanism active in human sepsis there is excitement by the potential of this approach to save millions of lives."

In teasing out the details of the AMR's protective mechanism, Marth and his colleagues learned that the receptor has the capability to selectively identify and remove certain blood components that could harm the host if they contributed to blood clotting in sepsis.

Although some scientists have suggested that little may be gained from research on sepsis in non-human species, the study by the Marth team discloses a mechanism of host protection that is conserved through mammalian evolution and which can be easily manipulated. The fact that this mechanism is imperceptible to studies of genomic variation and gene expression may explain why others have not discovered it earlier. "Much of biomedical research is focused on the gene. In our research, it was the study of metabolism that provided the key," explained Marth.

"Because it appears that the same exists in humans, investors have already contacted us about moving this forward into clinical trials," Marth said. "It's estimated that 50 to 100 million people around the world have each year, and we can now imagine a simple effective treatment consisting of a non-refrigerated enzyme mixed with saline, placed in a syringe and injected intravenously. This has the potential to translate into saved lives among those in the developed and undeveloped world."

Explore further: Research identifies potential new treatment for sepsis

More information: Inducing host protection in pneumococcal sepsis by preactivation of the Ashwell-Morell receptor, www.pnas.org/cgi/doi/10.1073/pnas.1313905110

Related Stories

Research identifies potential new treatment for sepsis

November 14, 2013
Sepsis is the leading cause of in-hospital death and there is no specific treatment for it. Now, research led by Dr. Qingping Feng of Western University (London, Canada) suggests a protein called recombinant human annexin ...

Immune system kill switch could be target for chemotherapy and infection recovery

December 6, 2012
Researchers have discovered an immune system 'kill switch' that destroys blood stem cells when the body is under severe stress, such as that induced by chemotherapy and systemic infections.

Researchers discover a protein that triggers inflammatory responses in hemorrhage and sepsis

October 6, 2013
Investigators at The Feinstein Institute for Medical Research have discovered a protein in the human body that can trigger and mediate inflammation in patients suffering from hemorrhage and sepsis. The findings were published ...

Study shows decrease in sepsis mortality rates

November 13, 2013
A recent study from Boston University School of Medicine (BUSM) and Boston Medical Center (BMC) shows a significant decrease in severe sepsis mortality rates over the past 20 years. Looking at data from patients with severe ...

Rising rates of severe and fatal sepsis during labor and delivery

September 23, 2013
Rates of severe sepsis and deaths from sepsis among U.S. women hospitalized for delivery have risen sharply over the last decade, reports a study in the October issue of Anesthesia & Analgesia, official journal of the International ...

Rapid blood test to diagnose sepsis at the bedside could save thousands of lives, study suggests

October 16, 2013
Researchers at King's College London have identified a biomarker – a biological 'fingerprint' – for sepsis in the blood, and showed it could be possible to diagnose the condition within two hours by screening for this ...

Recommended for you

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

Researchers create a functional salivary gland organoid

October 11, 2018
A research group led by scientists from Showa University and the RIKEN Center for Biosystems Dynamics Research in Japan have, for the first time, succeeded in growing three-dimensional salivary gland tissue that, when implanted ...

Lassa fever vaccine shows promise and reveals new test for immunity

October 11, 2018
Lassa fever belongs to the same class of hemorrhagic fevers as Ebola. Like Ebola, it has been a major health threat in Western Africa, infecting 100,000-300,000 people and killing 5,000 per year. A new vaccine against both ...

Genetically engineered 3-D human muscle transplant in a murine model

October 10, 2018
A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Jeddy_Mctedder
1 / 5 (10) Nov 25, 2013
why use blood thinners when you can just use the livers natural mechanisms to inhibit coagulation before it occurs. go science!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.