Simple dot test may help gauge the progression of dopamine loss in Parkinson's disease

November 9, 2013
The Triplet-Learning Task tests implicit learning, a type of learning that occurs without awareness or intent. Implicit learning relies on the caudate nucleus, an area of the brain affected by loss of dopamine. Credit: Katherine R. Gamble, Georgetown University

A pilot study by a multi-disciplinary team of investigators at Georgetown University suggests that a simple dot test could help doctors gauge the extent of dopamine loss in individuals with Parkinson's disease (PD). Their study is being presented at Neuroscience 2013, the annual meeting of the Society for Neuroscience.

"It is very difficult now to assess the extent of loss—a hallmark of Parkinson's disease—in people with the disease," says lead author Katherine R. Gamble, a psychology PhD student working with two Georgetown psychologists, a psychiatrist and a neurologist. "Use of this test, called the Triplets Learning Task (TLT), may provide some help for physicians who treat people with Parkinson's disease, but we still have much work to do to better understand its utility," she adds.

Gamble works in the Cognitive Aging Laboratory, led by the study's senior investigator, Darlene Howard, PhD, Davis Family Distinguished Professor in the department of psychology and member of the Georgetown Center for Brain Plasticity and Recovery.

The TLT tests implicit learning, a type of learning that occurs without awareness or intent, which relies on the caudate nucleus, an area of the brain affected by loss of dopamine.

The test is a sequential learning task that does not require complex motor skills, which tend to decline in people with PD. In the TLT, participants see four open circles, see two red dots appear, and are asked to respond when they see a green dot appear. Unbeknownst to them, the location of the first red dot predicts the location of the green target. Participants learn implicitly where the green target will appear, and they become faster and more accurate in their responses.

Previous studies have shown that the caudate region in the brain underlies implicit learning. In the study, PD participants implicitly learned the dot pattern with training, but a loss of dopamine appears to negatively impact that learning compared to healthy older adults.

"Their performance began to decline toward the end of training, suggesting that people with Parkinson's disease lack the neural resources in the caudate, such as dopamine, to complete the learning task," says Gamble.

In this study of 27 people with PD, the research team is now testing how implicit learning may differ by different PD stages and drug doses.

"This work is important in that it may be a non-invasive way to evaluate the level of dopamine deficiency in PD patients, and which may lead to future ways to improve clinical treatment of PD patients," explains Steven E. Lo, MD, associate professor of neurology at Georgetown University Medical Center, and a co-author of the study.

They hope the TLT may one day be a tool to help determine levels of dopamine loss in PD.

Explore further: New study links depression in newly diagnosed Parkinson's disease patients to reduced striatal dopamine synthesis

Related Stories

New study links depression in newly diagnosed Parkinson's disease patients to reduced striatal dopamine synthesis

October 10, 2013
According to the Parkinson's Disease Foundation, up to 60% of individuals with Parkinson's disease (PD) exhibit mild to moderate depression, which is often underdiagnosed. It is unclear whether depression results from having ...

Researchers look for clues to progression of Parkinson's disease

July 19, 2013
Emory researchers are conducting a prospective clinical study to examine the possibility of diagnosing Parkinson's disease (PD) before motor symptoms occur. The study is an arm of the Parkinson's Progression Markers Initiative ...

A noninvasive avenue for Parkinson's disease gene therapy

April 21, 2013
Researchers at Northeastern University in Boston have developed a gene therapy approach that may one day stop Parkinson's disease (PD) in it tracks, preventing disease progression and reversing its symptoms. The novelty of ...

Innovative new strategy to treat Parkinson's disease

December 19, 2011
Stabilizing the cell's power-generating center protects against Parkinson's disease (PD) in a rat model, according to a report published online this week in the Journal of Experimental Medicine.

Blocking LRRK2 activity is not a simple answer to Parkinson's disease

May 29, 2012
Mutations in the LRRK2 gene are the most common cause of genetic Parkinson's disease (PD). New research published in BioMed Central's open access journal Molecular Neurodegeneration demonstrates that loss of function of LRRK2 ...

Alzheimer disease and Parkinson disease do not appear to share common genetic risk

August 5, 2013
A study by Valentina Moskvina, Ph.D., of the Cardiff University School of Medicine, Wales, United Kingdom, and colleagues, examined the genetic overlap between Parkinson disease (PD) and Alzheimer disease (AD).

Recommended for you

Parkinson's is partly an autoimmune disease, study finds

June 21, 2017
Researchers have found the first direct evidence that autoimmunity—in which the immune system attacks the body's own tissues—plays a role in Parkinson's disease, the neurodegenerative movement disorder. The findings raise ...

Predicting cognitive deficits in people with Parkinson's disease

June 20, 2017
Parkinson's disease (PD) is commonly thought of as a movement disorder, but after years of living with PD approximately twenty five percent of patients also experience deficits in cognition that impair function. A newly developed ...

Pre-clinical study suggests Parkinson's could start in gut endocrine cells

June 15, 2017
Recent research on Parkinson's disease has focused on the gut-brain connection, examining patients' gut bacteria, and even how severing the vagus nerve connecting the stomach and brain might protect some people from the debilitating ...

Hi-res view of protein complex shows how it breaks up protein tangles

June 15, 2017
Misfolded proteins are the culprits behind amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and other neurodegenerative brain disorders. These distorted proteins are unable to perform their normal ...

CRISPR tech leads to new screening tool for Parkinson's disease

June 5, 2017
A team of researchers at the University of Central Florida is using breakthrough gene-editing technology to develop a new screening tool for Parkinson's disease, a debilitating degenerative disorder of the nervous system. ...

Infection with seasonal flu may increase risk of developing Parkinson's disease

May 30, 2017
Most cases of Parkinson's have no known cause, and researchers continue to debate and study possible factors that may contribute to the disease. Research reported in the journal npj Parkinson's Disease suggests that a certain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.