3Qs: New ways to treat injuries like Gronk's

December 18, 2013 by Angela Herring

New England Patriots tight end Rob Gronkowski tore both his articular cartilage and medial cartilage ligaments in a game two weeks ago after a defender's jarring hit to his leg. The current recovery period for ligament tears is often more than a year, so the injury has ended his 2013 season and could possibly affect his availability next season. But new research from Northeastern professor Thomas Webster, chair of the Department of Chemical Engineering and an expert in nanomedicine, could change that for future athletes.

What are the challenges of treating and recovering from ACL and MCL tears like Gronkowski recently suffered?

Ligament tissue repair is extremely difficult. Only about half of those receiving treatment return to a normal active lifestyle, and most of them are not football players. The additional physical forces placed on ligaments during the sport mean an even lower chance of returning to a very active lifestyle.

Healing ligament tissue damage is difficult since the cells of the ligaments do not regenerate that quickly and the mechanical environment is very difficult to stabilize to allow healing to occur. Most treatments involve taking ligaments from another part of the body (such as the patella) and stitching it into the remaining torn ligament to heal it. Using this approach, it is very difficult to stabilize the ligament over the course of six to nine months, which is necessary for healing to occur. (Imagine asking Gronk, or anyone, to sit in bed for that long without moving.) An even bigger problem is when the ligament is torn right at the bone interface, as ligaments naturally come out of bone; this is also very difficult to treat because of the harsh mechanical environment.

What are the new nanomedicine methods you and your colleagues at Northeastern are developing to treat ligament injuries, and how could they be used to treat injuries like Gronkowski's in the future?

We are developing two types of approaches based on nanomedicine: an injectable nanomaterial and a ligament nano bandage. With chemical engineering professor Hicham Fenniri and graduate student Linlin Sun, we are developing an injectable nanostructured material that can self assemble in the same way that nanofibers do in natural ligaments to mechanically stabilize the injury and promote healing. It is super sticky, so immediately after injection, it sticks to the torn parts the ligament and brings them together to stabilize it so that healing can occur.

In another approach, chemical engineering graduate student Dan Hickey is developing a synthetic "nano-bandage" that contains nanomaterials that adhere to and mimic the natural structure of the ligament. The nano-bandage is stitched around the injury to stabilize it and can promote healing faster than materials can today. We discovered that magnesium nanoparticles (a natural element in our diet) significantly improve the mechanical and cellular compatibility properties of the bandage and are a key ingredient in the material's ability to regenerate ligament tissue.

With both approaches, we see indications of healing times that are about three to four times faster than current practices, which would mean Gronk could return to the football field three to four times faster. But equally as important, our results suggest that when the tissue regenerates it is stronger and may reduce the concern that another tear will happen on the football field, currently a common problem for football players and all athletes.

Could these approaches be applied to treat other kinds of injuries or medical problems? If so, how would they work?

Yes, often times ligament, cartilage, tendon, and muscle tears have the same problems: the active mechanical environment makes it difficult to regenerate tissue. We need biomaterials that can first stabilize the tear and then promote tissue repair once the injury is mechanically stable. Both of the approaches above can mechanically stabilize the injury better than current technologies and furthermore promote various types of tissue growth, which current technologies cannot do.

Explore further: New ligament discovered in the human knee

Related Stories

New ligament discovered in the human knee

November 5, 2013
Two knee surgeons at University Hospitals Leuven have discovered a previously unknown ligament in the human knee. This ligament appears to play an important role in patients with anterior cruciate ligament (ACL) tears.

Orthopaedic surgeon says anterolateral ligament not "new" but promising for ACL injuries

November 11, 2013
While anterior cruciate ligament (ACL) reconstruction surgery is a widely accepted and proven procedure, according to a renowned orthopaedic surgeon at Western University, there is still an unacceptably high re-injury rate ...

Whether tackle or touch, Thanksgiving family football can lead to injuries

November 23, 2011
(Medical Xpress) -- Whether it’s tackle or touch, the traditional pickup family football game is almost as important as the Thanksgiving dinner itself to many families.

Recommended for you

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

Team eradicates hepatitis C in 10 patients following lifesaving transplants from infected donors

April 30, 2017
Ten patients at Penn Medicine have been cured of the Hepatitis C virus (HCV) following lifesaving kidney transplants from deceased donors who were infected with the disease. The findings point to new strategies for increasing ...

'bench to bedside to bench': Scientists call for closer basic-clinical collaborations

March 24, 2017
In the era of genome sequencing, it's time to update the old "bench-to-bedside" shorthand for how basic research discoveries inform clinical practice, researchers from The Jackson Laboratory (JAX), National Human Genome Research ...

The ethics of tracking athletes' biometric data

January 18, 2017
(Medical Xpress)—Whether it is a FitBit or a heart rate monitor, biometric technologies have become household devices. Professional sports leagues use some of the most technologically advanced biodata tracking systems to ...

Financial ties between researchers and drug industry linked to positive trial results

January 18, 2017
Financial ties between researchers and companies that make the drugs they are studying are independently associated with positive trial results, suggesting bias in the evidence base, concludes a study published by The BMJ ...

Best of Last Year – The top Medical Xpress articles of 2016

December 23, 2016
(Medical Xpress)—It was a big year for research involving overall health issues, starting with a team led by researchers at the UNC School of Medicine and the National Institutes of Health who unearthed more evidence that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.