Age-related cognitive decline linked to energy in synapses in prefrontal cortex

December 2, 2013

Age-related cognitive decline and changes in the nervous system are closely linked, but up until recently, they were thought to result from the loss of neurons in areas such as the prefrontal cortex, the part of the brain important in working memory. A series of papers have shown that the "loss of neurons" concept is simply not true. Now, Mount Sinai scientists have begun to look elsewhere, focusing instead on synaptic health in the prefrontal cortex. Their work, published online in the December 2 issue of the peer-reviewed journal Proceedings of the National Academy of Sciences, shows that synaptic health in the brain is closely linked to cognitive decline. Further, the scientists show that estrogen restores synaptic health and also improves working memory.

"We are increasingly convinced that maintenance of synaptic health as we age, rather than rescuing cognition later, is critically important in preventing age-related and Alzheimer's disease," said the study's senior author, John Morrison, PhD, and Dean of Basic Sciences and Professor of the Fishberg Department of Neuroscience and the Friedman Brain Institute, at the Icahn School of Medicine at Mount Sinai.

In the study, poor in young and aged rhesus monkeys was associated with a higher incidence of malformed donut-shaped in presynaptic terminals. Notably, these terminals containing donut-shaped mitochondria formed smaller and weaker synaptic contacts, compared to those with healthy or straight mitochondria. Both the working memory and the malformation of mitochondria were reversed by estrogen treatment.

"We were excited to see that the occurrence of these donut-shaped mitochondria could be reversed with estrogen, which has known antioxidant effects," said Yuko Hara, PhD, the lead researcher, and Assistant Professor in the Fishberg Department of Neurosciences, at the Icahn School of Medicine at Mount Sinai.

The researchers studied 29 young and aged that were trained to perform a test of working memory referred to as the Delayed Response Test. Next, they examined mitochondria, specifically those that supply energy to the synapses, and their role in working memory. Working memory requires the energy-demanding activation of nerve cells in the prefrontal cortex through the complex arrangement of the synapses that interconnect nerve cells.

Peter R. Rapp, PhD, from the National Institute on Aging, Laboratory of Behavioral Neuroscience, in Baltimore, MD, also helped direct this research. Frank Yuk, Rishi Puri, and William G.M. Janssen, from the Icahn School of Medicine at Mount Sinai also were study coauthors.

Cognitive testing of monkeys was carried out the California National Primate Research Center at the University of California Davis. The National Institute on Aging supported this research.

Explore further: Researchers show reduced ability of the aging brain to respond to experience

More information: Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment,PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1311310110

Related Stories

Researchers show reduced ability of the aging brain to respond to experience

May 24, 2011
Researchers at Mount Sinai School of Medicine have published new data on why the aging brain is less resilient and less capable of learning from life experiences. The findings provide further insight into the cognitive decline ...

Study provides potential explanation for mechanisms of associative memory

December 13, 2011
Researchers from the University of Bristol have discovered that a chemical compound in the brain can weaken the synaptic connections between neurons in a region of the brain important for the formation of long-term memories. ...

Shedding light on memory deficits in schizophrenic patients and healthy aged subjects

February 23, 2012
Working memory, which consists in the short-term retention and processing of information, depends on specific regions of the brain working correctly. This faculty tends to deteriorate in patients with schizophrenia, as it ...

Study finds brain abnormalities linked to impaired self-awareness in cocaine addiction

November 20, 2013
New research from the Icahn School of Medicine at Mount Sinai reveals long-term cocaine abuse may be associated with deficits in parts of the brain involved in monitoring and overseeing one's own behavior. The findings call ...

Recommended for you

Navigation and spatial memory—new brain region identified to be involved

August 16, 2017
Navigation in mammals including humans and rodents depends on specialized neural networks that encode the animal's location and trajectory in the environment, serving essentially as a GPS, findings that led to the 2014 Nobel ...

What neuroscience can tell us about the Google diversity memo

August 15, 2017
Everybody seems to have an opinion about Google's recent sacking of its malware software engineer James Damore for circulating a memo arguing that women and men are suitable for different roles because they are intrinsically ...

Prematurity leaves distinctive molecular signature in infants' cerebellum

August 15, 2017
Premature birth, which affects one in 10 U.S. babies, is associated with altered metabolite profiles in the infants' cerebellum, the part of the brain that controls coordination and balance, a team led by Children's National ...

Which research results in mice will help humans with multiple sclerosis? Now there's a way to tell

August 15, 2017
People with multiple sclerosis (MS) know all too well the frustration of hearing that success in treating the disease in mice had little or no effect in humans.

Cooling helmet, supplement show potential as concussion healers

August 15, 2017
A brain cooling device and an oral supplement made from pine bark extract both have potential to expedite concussion recovery, according to two new studies by Penn State researchers.

Granulins are brain treasure, not trash

August 14, 2017
Emory University School of Medicine researchers have developed tools that enable them to detect small proteins called granulins for the first time inside cells. Granulins are of interest to neuroscientists because mutations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.