Carriers of a genetic mutation show increased dependence on tobacco

December 20, 2013

Scientists at the Institut Pasteur, the French National Center for Scientific Research (CNRS) and Pierre and Marie Curie University (UPMC) have recently proven that, in mice, nicotine intake– nicotine is the main addictive substance in tobacco – is heavily regulated by a genetic mutation that is very common in humans. This mutation affects the neuronal nicotinic receptor, disrupting its function and resulting in partial inactivation of the "reward circuit". Carriers of this mutation therefore have to increase their consumption to feel the effects of tobacco. These results, published online on December 3, 2013 in Molecular Psychiatry, pave the way for the development of new smoking cessation treatments that target carriers of this mutation.

During , binds to , thus activating the "reward circuit", a neuronal system responsible for a number of responses – including a feeling of well-being – during normal function. The effect of nicotine on the brain compensates for withdrawal symptoms felt by smokers when they are deprived of tobacco. As a result, a person's tobacco consumption is closely linked to the sensitivity of these nicotinic receptors.

The teams led by Uwe Maskos, who heads the Integrative Neurobiology of Cholinergic Systems Unit at the Institut Pasteur / CNRS, and by CNRS scientist Philippe Faure, who manages the Neurobiology of Adaptive Processes laboratory (CNRS / UPMC), have recently made a discovery proving that nicotine addiction may be influenced by an individual's genetic heritage. These scientists show that, in mice, a genetic mutation resulted in a marked reduction in sensitivity to nicotine. Carriers of this gene therefore require a higher dose of tobacco than non-carriers in order to obtain the same amount of pleasure - somewhere on the order of three times more.

The mutation characterized by the scientists affects part of the nicotinic receptor. The presence of this mutation disrupts the normal function of the nicotinic receptor, partially inactivating the "reward circuit".

This mutation occurs frequently in humans. Other studies suggest that it is present in 35% of Europeans, and in nearly 90% of heavy smokers. These discoveries pave the way for the development of "personalized" smoking cessation treatments for individuals who carry this genetic mutation.

Explore further: Eliminating protein in specific brain cells blocks nicotine reward

More information: Nicotine consumption is regulated by a human polymorphism in dopamine neurons, Molecular Psychiatry, December 3, 2013.

Related Stories

Eliminating protein in specific brain cells blocks nicotine reward

July 26, 2011
Removing a protein from cells located in the brain's reward center blocks the anxiety-reducing and rewarding effects of nicotine, according to a new animal study in the July 27 issue of The Journal of Neuroscience. The findings ...

Researchers find why nicotine in cigarettes may relieve anxiety in smokers

November 8, 2012
Preclinical data suggests inactivation of a specific sub-class of nicotinic receptors may be an effective strategy to help smokers quit without feeling anxious, according to Virginia Commonwealth University researchers.

Nicotine withdrawal traced to very specific group of brain cells

November 14, 2013
Nicotine withdrawal might take over your body, but it doesn't take over your brain. The symptoms of nicotine withdrawal are driven by a very specific group of neurons within a very specific brain region, according to a report ...

Internet addiction—Causes at the molecular level

August 29, 2012
Everybody is talking about Internet addiction. Medically, this phenomenon has not yet been as clearly described as nicotine or alcohol dependency. But a study conducted by researchers from the University of Bonn and the Central ...

Nicotine drives cell invasion that contributes to plaque formation in coronary arteries

December 15, 2013
Nicotine, the major addictive substance in cigarette smoke, contributes to smokers' higher risk of developing atherosclerosis, the primary cause of heart attacks, according to research to be presented Sunday, Dec. 15, at ...

Recommended for you

Oxytocin turns up the volume of your social environment

September 20, 2017
Before you shop for the "cuddle" hormone oxytocin to relieve stress and enhance your social life, read this: a new study from the University of California, Davis, suggests that sometimes, blocking the action of oxytocin in ...

Researchers develop new tool to assess individual's level of wisdom

September 20, 2017
Researchers at University of San Diego School of Medicine have developed a new tool called the San Diego Wisdom Scale (SD-WISE) to assess an individual's level of wisdom, based upon a conceptualization of wisdom as a trait ...

Self-control may not diminish throughout the day

September 20, 2017
After a long day of work and carefully watching what you eat, you might expect your self-control to slip a little by kicking back and cracking open a bag of potato chips.

Alcohol use affects levels of cholesterol regulator through epigenetics

September 20, 2017
In an analysis of the epigenomes of people and mice, researchers at Johns Hopkins Medicine and the National Institutes of Health report that drinking alcohol may induce changes to a cholesterol-regulating gene.

One in four girls is depressed at age 14, new study reveals

September 20, 2017
New research shows a quarter of girls (24%) and one in 10 boys (9%) are depressed at age 14.

Tablets can teach kids to solve physical puzzles

September 20, 2017
Researchers confirm that when 4-6 year old children learn how to solve a puzzle using a touchscreen tablet, they can then apply this learning to the same puzzle in the physical world. This contradicts most previous research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.