How cells remodel after UV radiation

December 19, 2013, University of California - San Diego

Researchers at the University of California, San Diego School of Medicine, with colleagues in The Netherlands and United Kingdom, have produced the first map detailing the network of genetic interactions underlying the cellular response to ultraviolet (UV) radiation.

The researchers say their study establishes a new method and resource for exploring in greater detail how cells are damaged by UV radiation and how they repair themselves. UV damage is one route to malignancy, especially in skin cancer, and understanding the underlying repair pathways will better help scientists to understand what goes wrong in such cancers.

The findings will be published in the December 26, 2013 issue of Cell Reports.

Principal investigator Trey Ideker, PhD, division chief of genetics in the UC San Diego School of Medicine and a professor in the UC San Diego Departments of Medicine and Bioengineering, and colleagues mapped 89 UV-induced functional interactions among 62 protein complexes. The interactions were culled from a larger measurement of more than 45,000 double mutants, the deletion of two separate genes, before and after different doses of UV radiation.

Specifically, they identified interactive links to the cell's chromatin structure remodeling (RSC) complex, a grouping of protein subunits that remodel chromatin – the combination of DNA and proteins that make up a cell's nucleus – during cell mitosis or division. "We show that RSC is recruited to places on genes or DNA sequences where UV damage has occurred and that it helps facilitate efficient repair by promoting nucleosome remodeling," said Ideker.

The process of repairing DNA damage caused by UV radiation and other sources, such as chemicals and other mutagens, is both simple and complicated. DNA-distorting lesions are detected by a cellular mechanism called the nucleotide excision repair (NER) pathway. The lesion is excised; the gap filled with new genetic material copied from an intact DNA strand by special enzymes; and the remaining nick sealed by another specialized enzyme.

However, NER does not work in isolation; rather it coordinates with other biological mechanisms, including RSC.

"DNA isn't free-floating in the cell, but is packaged into a tight structure called chromatin, which is DNA wound around proteins," said Rohith Srivas, PhD, a former research scientist in Ideker's lab and the study's first author. "In order for repair factors to fix DNA damage, they need access to naked DNA. This is where chromatin remodelers come in: In theory, they can be recruited to the DNA, open it up and allow repair factors to do their job."

Rohith said that other scientists have previously identified complexes that perform this role following UV damage. "Our results are novel because they show RSC is connected to both UV damage pathways: transcription coupled repair – which acts on parts of DNA being expressed – and global genome repair, which acts everywhere. All previous remodelers were linked only to global genome repair."

The scientists noted that the degree of genetic rewiring correlates with the dose of UV. Reparative interactions were observed at distinct low or high doses of UV, but not both. While genetic interactions at higher doses is not surprising, the authors said, the findings suggest low-dose UV radiation prompts specific interactions as well.

Explore further: New insights into DNA repair process may spur better cancer therapies

Related Stories

New insights into DNA repair process may spur better cancer therapies

September 30, 2013
By detailing a process required for repairing DNA breakage, scientists at the Duke Cancer Institute have gained a better understanding of how cells deal with the barrage of damage that can contribute to cancer and other diseases.

Novel cancer cell DNA damage repair mechanism unveils

December 10, 2013
Research with a Finnish background facilitates the development of more effective cancer medication

HCMV researchers utilize novel techniques to show preferential repair of the viral genome

November 29, 2012
A new study about Human Cytomegalovirus (HCMV), a leading cause of birth defects, reveals how the virus co-opts cells' abilities to repair themselves. In the paper published on November 29 in the Open Access journal PLOS ...

New study sheds light on cancer-protective properties of milk

October 3, 2012
Milk consumption has been linked to improved health, with decreased risks of diabetes, metabolic syndrome, and colon cancer. A group of scientists in Sweden found that lactoferricin4-14 (Lfcin4-14), a milk protein with known ...

A scanner for hereditary defects

January 24, 2013
Our genetic material is constantly exposed to damage, which the body's own proteins normally repair. One of these proteins works like a scanner, continually scouring the genetic material for signs of damage. Researchers from ...

Laser pulses reveal DNA repair mechanisms

August 9, 2013
A new straightforward method enables monitoring the response of nuclear proteins to DNA damage in time and space. The approach is based on nonlinear photoperturbation.

Recommended for you

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

CRISPR joins battle of the bulge, fights obesity without edits to genome

December 13, 2018
A weighty new study shows that CRISPR therapies can cut fat without cutting DNA. In a paper published Dec. 13, 2018, in the journal Science, UC San Francisco researchers describe how a modified version of CRISPR was used ...

Noncoding mutations contribute to autism risk

December 13, 2018
A whole-genome sequencing study of nearly 2,000 families has implicated mutations in 'promoter regions' of the genome—regions that precede the start of a gene—in autism. The study, which appears in the December 14 issue ...

New method for studying ALS more effectively

December 13, 2018
The neurodegenerative disease ALS causes motor neuron death and paralysis. However, long before the cells die, they lose contact with muscles as their axons atrophy. Researchers at Karolinska Institutet in Sweden have now ...

Paternal grandfather's high access to food may indicate higher mortality risk in grandsons

December 12, 2018
A paternal grandfather's access to food during his childhood is associated with mortality risk, especially cancer mortality, in his grandson, shows a large three-generational study from Stockholm University. The reason might ...

New genetic study could lead to better treatment of severe asthma

December 12, 2018
The largest-ever genetic study of people with moderate-to-severe asthma has revealed new insights into the underlying causes of the disease which could help improve its diagnosis and treatment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.