Study confirms a gene linked to Asperger Syndrome and empathy

December 17, 2013 by Alexandra Buxton

(Medical Xpress)—Scientists have confirmed that variations in a particular gene play a key role in the autism spectrum condition known as Asperger Syndrome. They have also found that variations in the same gene are also linked to differences in empathy levels in the general population.

A study to be published later this month in the journal Molecular Autism confirms previous research that people with Asperger Syndrome (AS) are more likely to carry specific variations in a particular gene. More strikingly, the study supports existing findings that the same gene is also linked to how much empathy typically shown by individuals in the general population.

The research was carried out by a team of researchers led by Professor Baron-Cohen at the Autism Research Centre at Cambridge University. Asperger Syndrome is an autism spectrum condition. The researchers looked for sequence variations (called single nucleotide polymorphisms or SNPs) in the gene known as GABRB3 in a total of 530 adults - 118 people diagnosed with AS and 412 people without a diagnosis.

The team found that certain SNPs in GABRB3 were significantly more common in people with AS. They also discovered that additional genetic variations in the same gene were linked to scores on an empathy measure called the Empathy Quotient (EQ) in the general population.

AS is diagnosed when a person struggles with social relationships and communication, and shows unusually narrow interests and resistance to change, but has good intelligence and language skills. Most genetic studies of autistic spectrum conditions treat autism as if they are all very similar, whereas in reality there is considerable variation (e.g., in language level and intellectual ability).

Rather than studying people on the autistic condition spectrum, this new study looked only people with AS, as a well-defined subgroup of individuals within this range. The researchers examined the gene GABRB3 which regulates the functioning of a neurotransmitter called gamma-aminobutyric acid (GABA) and which contains a number of SNPs that vary across the population.

The volunteers were tested for 45 SNPs within this key gene. The team had previously found that SNPs in this gene were more common in adults with AS and also showed a relationship with empathy levels and tactile sensitivity (how sensitive people are to being touched) in the general population.

Testing a new sample of volunteers who had not taken part in previous studies, the researchers found that three of the SNPs were again more common in adults with AS, and two different SNPs in the same gene were again related to empathy levels in the , confirming that the gene is involved in autism spectrum conditions.

Professor Baron-Cohen said: "We are excited that this study confirms that variation in GABRB3 is linked not just to AS but to individual differences in empathy in the population. Many candidate do not replicate across studies and across different samples, but this genetic finding seems to be a solid result. Research now needs to focus on where this gene is expressed in the brain in autism, and how it interacts with other genetic and non-genetic factors that cause AS."

The team was co-led by Dr Bhismadev Chakrabarti from the Department of Psychology at Reading University. He commented: "Genes play an important role in autism and Asperger Syndrome. This new study adds to evidence that GABRB3 is a key gene underlying these conditions. This gene is involved in the functioning of a neurotransmitter that regulates excitation and inhibition of nerve cell activity so the research gives us vital additional information about how the brain may develop differently in people with Asperger Syndrome."

Varun Warrier, who carried out the study as part of his graduate research at Cambridge University, added: "The most important aspect of this research is that it points to common genetic variants in GABRB3 being involved in both AS and in empathy as a dimensional trait. Although GABRB3 is not the only gene to be involved in this condition and in empathy levels, we are confident that we have identified one of the key players. We are following this up by testing how much protein GABRB3 produces in the brain in autism, since a genetic finding of this kind becomes more explanatory when we can also measure its function."

Explore further: Synaesthesia is more common in autism

More information: "Genetic variation in GABRB3 is associated with Asperger syndrome and multiple endophenotypes relevant to autism." Varun Warrier, Simon Baron-Cohen and Bhismadev Chakrabarti. Molecular Autism 2013, 4:48 DOI: 10.1186/2040-2392-4-48

Related Stories

Synaesthesia is more common in autism

November 19, 2013
People with autism are more likely to also have synaesthesia, suggests new research in the journal Molecular Autism.

Girls with anorexia have elevated autistic traits

August 7, 2013
(Medical Xpress)—Girls with anorexia nervosa show a mild echo of the characteristics of autism, suggests new research in the journal Molecular Autism.

Team first to map autism-risk genes by function

November 21, 2013
Pity the poor autism researcher. Recent studies have linked hundreds of gene mutations scattered throughout the brain to increased autism risk. Where do you start?

Genetic analysis of individuals with autism finds gene deletions

October 3, 2013
Using powerful genetic sequencing technology, a team of investigators, led by researchers at the Icahn School of Medicine at Mount Sinai, scanned the genome of hundreds of individuals, and discovered those diagnosed with ...

Air pollution and genetics combine to increase risk for autism

December 2, 2013
Exposure to air pollution appears to increase the risk for autism among people who carry a genetic disposition for the neurodevelopmental disorder, according to newly published research led by scientists at the Keck School ...

Recommended for you

Gene variant activity is surprisingly variable between tissues

August 21, 2017
Every gene in almost every cell of the body is present in two variants called alleles—one from the mother, the other one from the father. In most cases, both alleles are active and transcribed by the cells into RNA. However, ...

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.