Team first to map autism-risk genes by function

November 21, 2013

Pity the poor autism researcher. Recent studies have linked hundreds of gene mutations scattered throughout the brain to increased autism risk. Where do you start?

UCLA neuroscientists may have an answer. They are the first to map groups of -risk by function, and to identify where and when these genes normally play major roles in .

In addition, they discovered disturbances in that define key pathways between parts of the cerebral cortex. The research suggests that these early disruptions are created by mutations in genes during fetal brain development and are not a result of autism itself.

Published in the Nov. 21 edition of Cell, the findings will help scientists understand how cause autism on a molecular level and prioritize targets for future studies.

"Identifying gene variants that boost risk is only the first step of unraveling a disease," explained lead author Dr. Daniel Geschwind, the Gordon and Virginia MacDonald Distinguished Professor of Human Genetics, professor of neurology at the David Geffen School of Medicine at UCLA and professor of psychiatry at the Semel Institute for Neuroscience and Human Behavior. "We need to figure out where genetic changes appear in the brain, at what stages during development and which biological processes they disrupt. Only then will we understand how mutations cause autism."

Using an online atlas called BrainSpan, the authors charted gene activity in the developing brain before birth. In particular, they examined what happens during gene expression —when genes copy data from DNA to RNA in order to create proteins.

Geschwind and his colleagues found high activity in risk genes during two processes critical to early brain development.

"We found that gene variants are expressed in the developing brain when cells define their future identities and roles in neural circuits," first author Neelroop Parikshak, a graduate student researcher in Geschwind's lab. "Therefore, changes in the genes influence the brain's wiring by altering the synapse and shaping how neurons transmit signals to each other."

The mutated genes also interfered with how the brain's layers and halves relate to one another, a phenomenon confirmed by previous imaging studies of the autistic brain.

"We discovered gene-related disruption of circuits that connect the autistic brain's layers and hemispheres to each other," explained Geschwind, who is director of the UCLA Neurogenetics Program and the Center for Autism Research and Treatment and co-director of the Center for Neurobehavioral Genetics at UCLA. "Our finding suggests that the mutated genes caused the miswiring; it's not a result of having the disease itself."

The UCLA team also demonstrated that while autism and share similar risk genes, the genes behave uniquely, showing for the first time how the two disorders differ.

"People often lump intellectual disability together with autism, because the disorders' risk genes overlap," said Parikshak. "We showed that these genes have unique expression patterns in different brain regions at varying times during .

"Genes linked to intellectual disability influence many biological processes in the body," he added. "But genes tied to autism tend to affect specific functions, such as the connections between regions that are essential to many human-specific behaviors, like speech and language."

The UCLA study will reap immediate benefits in the near future, when neuroscientists sequence the genomes of several thousand people for genetic mutations linked to autism and intellectual disability.

"We've made our analysis publically available to allow other researchers to expand upon our study and explore the data in detail," said Geschwind. "We believe this will mark an important step forward in understanding the biology behind autism and other neurodevelopmental disorders."

Explore further: Researchers uncover new tools for targeting genes linked to autism

Related Stories

Researchers uncover new tools for targeting genes linked to autism

June 21, 2012
UCLA researchers have combined two tools – gene expression and the use of peripheral blood -- to expand scientists' arsenal of methods for pinpointing genes that play a role in autism. Published in the June 21 online ...

Synaesthesia is more common in autism

November 19, 2013
People with autism are more likely to also have synaesthesia, suggests new research in the journal Molecular Autism.

Study explains functional links between autism and genes

June 21, 2012
A pioneering report of genome-wide gene expression in autism spectrum disorders (ASDs) finds genetic changes that help explain why one person has an ASD and another does not. The study, published by Cell Press on June 21 ...

Autism changes molecular structure of the brain, study finds

May 25, 2011
For decades, autism researchers have faced a baffling riddle: how to unravel a disorder that leaves no known physical trace as it develops in the brain.

Analysis of 26 networked autism genes suggests functional role in the cerebellum

July 25, 2013
A team of scientists has obtained intriguing insights into two groups of autism candidate genes in the mammalian brain that new evidence suggests are functionally and spatially related. The newly published analysis identifies ...

More sophisticated wiring, not just bigger brain, helped humans evolve beyond chimps

August 22, 2012
Human and chimp brains look anatomically similar because both evolved from the same ancestor millions of years ago. But where does the chimp brain end and the human brain begin?

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.