RNA and protein molecules join forces to switch on gene networks responsible for brain development

December 19, 2013
Developmental biology: How a protein collaboration builds the brain
The collaborative effects of the lncRNA RMST and the protein SOX2 help drive maturation of neurons, labeled here by expression of fluorescent neuron-specific proteins. Credit: 2013 A*STAR Genome Institute of Singapore

Long noncoding RNAs (lncRNAs) are one of many RNA subtypes that do not give rise to protein but instead modulate the expression of other genes. Scientists are particularly interested in lncRNAs owing to their prominent role in regulating how embryonic stem cells give rise to mature tissues. Lawrence Stanton and colleagues at the A*STAR Genome Institute of Singapore have now demonstrated how one lncRNA's collaboration with a protein partner helps to steer development of the brain.

Stanton and his co-workers had previously identified the rhabdomyosarcoma 2-associated transcript (RMST) lncRNA in a search for lncRNAs that are specifically expressed during neuronal maturation. "We selected RMST for detailed analysis because we could demonstrate that it is a key regulator of neurogenesis," explains Stanton. RMST levels rise sharply as neuronal maturation proceeds (see image). The researchers demonstrated that they could block neuronal development in precursor cells by depleting this lncRNA.

To determine its mechanism, Stanton and co-workers isolated RMST from cells in a manner that allowed them to co-purify proteins that were physically associated with the RNA. These experiments revealed a strong, specific interaction with SOX2, a transcription factor protein that binds specific DNA sequences within the genome to switch nearby genes on or off. "It was quite exciting for us to find that RMST is a partner for SOX2, which has already been established as a key regulator of neurogenesis," says Stanton.

The researchers identified an extensive set of genes whose activity was altered in a similar fashion by reducing levels of either SOX2 or RMST in neuronal precursors, providing further evidence for a collaborative functional relationship. Importantly, many genes within this subset have well-defined roles in the control of . In the absence of RMST, SOX2 was no longer physically associated with many of these genes, indicating that the lncRNA helps to target the transcription factor to this subset of genes. Closer examination revealed that rather than binding directly to DNA, RMST appears to recruit SOX2 via interactions with the chromatin proteins that provide infrastructure for the chromosomal DNA adjacent to these .

"This [finding] expands our understanding of the regulatory process that controls the birth of neurons," says Stanton. He notes that the study builds on a growing body of work indicating a potential role for brain-specific lncRNAs in certain neurological disorders. His team is now exploring the possibility that abnormal regulation of RMST or other lncRNAs might contribute to the neurodegenerative pathology of Parkinson's disease.

Explore further: Scientists discover gene that controls the birth of neurons

More information: Ng, S.-Y., Bogu, G. K., Soh, B. S. & Stanton, L. W. "The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis." Molecular Cell 51, 349–359 (2013). dx.doi.org/10.1016/j.molcel.2013.07.017

Ng, S.-Y., Johnson, R. & Stanton, L. W. "Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors." The EMBO Journal 31, 522–533 (2012). dx.doi.org/10.1038/emboj.2011.459

Related Stories

Scientists discover gene that controls the birth of neurons

August 28, 2013
Scientists at A*STAR's Genome Institute of Singapore (GIS) have discovered an unusual gene that controls the generation of neurons. This important finding, which is crucial in understanding serious diseases of the brain such ...

Long non-coding RNA molecules necessary to regulate differentiation of embryonic stem cells into cardiac cells

January 25, 2013
When the human genome was sequenced, biologists were surprised to find that very little of the genome—less than 3 percent—corresponds to protein-coding genes. What, they wondered, was all the rest of that DNA doing?

Brain development is guided by 'junk' DNA that isn't really junk

April 15, 2013
(Medical Xpress)—Specific DNA once dismissed as junk plays an important role in brain development and might be involved in several devastating neurological diseases, UC San Francisco scientists have found.

Recommended for you

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Evolved masculine and feminine behaviors can be inherited from social environment

August 15, 2017
The different ways men and women behave, passed down from generation to generation, can be inherited from our social environment - not just from genes, experts have suggested.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.