Long non-coding RNA molecules necessary to regulate differentiation of embryonic stem cells into cardiac cells

January 25, 2013 by Anne Trafton, Massachusetts Institute of Technology

When the human genome was sequenced, biologists were surprised to find that very little of the genome—less than 3 percent—corresponds to protein-coding genes. What, they wondered, was all the rest of that DNA doing?

It turns out that much of it codes for genetic snippets known as long non-coding RNAs, or lncRNAs. In recent years, scientists have found that these molecules often help to regulate which genes get turned on or off inside a cell. However, little is known about the specific roles of the thousands of lncRNAs discovered so far.

In a new study, MIT have identified a critical role for a lncRNA they dubbed "Braveheart." This lncRNA appears to stimulate to transform into during mouse embryonic stem cell (ESC) differentiation; the researchers suspect that lncRNAs may control this process in humans as well. If so, learning more about lncRNAs could offer a new approach to developing regenerative drugs for patients whose hearts have been damaged by cardiovascular disease or aging.

"It opens a new door to what we could do, and how we could use lncRNAs to induce specific cell types, that's been completely unexplored," says Carla Klattenhoff, a postdoc in MIT's Department of Biology and one of the lead authors of a paper describing the findings in the Jan. 24 online edition of Cell.

MIT postdoc Johanna Scheuermann is also a lead author of the paper. Senior author is Laurie Boyer, the Irwin and Helen Sizer Career Development Associate Professor of Biology at MIT.

The researchers zeroed in on the Braveheart lncRNA because they had noticed that it is abundant both in ESCs and in differentiating heart cells. In the new study, they found that without normal levels of the Braveheart lncRNA, mouse ESCs did not develop any of the three major types of heart cells that comprise the (which make up ), and .

They also showed that Braveheart controls the gene known to be a master regulator of heart-cell differentiation in vertebrate animals. This gene, called MesP1, initiates a cascade of hundreds of genes needed for heart development. However, without Braveheart, this process never gets started.

The researchers found that Braveheart controls the cascade by interacting with a protein complex known as the PRC2 complex, which normally sits on top of DNA, blocking MesP1 and other genes necessary for heart-cell development. When Braveheart interacts with it, the MesP1 network is activated and heart development proceeds.

"This paper is definitely a first step toward what we need to do, which is understand in a more fundamental way the biological role of these noncoding RNAs," says Ramin Shiekhattar, a professor of gene regulation and expression at the Wistar Institute in Philadelphia.

Shiekhattar, who was not part of the research team, adds that important next steps include deciphering in more detail the mechanism of how this lncRNA exerts its effects, and testing what happens when the lncRNA is knocked out in mice.

LncRNAs may also contribute to the species-specific complexity of organs such as the heart, according to the MIT team. This could help explain why the human heart is so much more complex than, for example, the fly heart, even though both species use many of the same cardiac protein-coding genes.

"We think that the added complexity may come from the non-coding portion of the genome, and we think lncRNAs are involved," Scheuermann says.

The researchers are now looking for other lncRNAs that function in cardiac development in mice, and are also searching for human lncRNAs involved in heart-cell . So far they have not found a direct human analog of Braveheart—which is not surprising, Klattenhoff says, because lncRNAs tend to evolve much more rapidly than protein-coding genes. However, they expect to identify many novel lncRNAs that play critical roles in human heart development and to find that mutations in lncRNAs will contribute to cardiovascular diseases.

Explore further: Long non-coding RNA prevents the death of maturing red blood cells

Related Stories

Long non-coding RNA prevents the death of maturing red blood cells

December 7, 2011
A long non-coding RNA (lncRNA) regulates programmed cell death during one of the final stages of red blood cell differentiation, according to Whitehead Institute researchers. This is the first time a lncRNA has been found ...

RNA spurs melanoma development

May 10, 2011
Traditionally, RNA was mostly known as the messenger molecule that carries protein-making instructions from a cell's nucleus to the cytoplasm. But scientists now estimate that approximately 97 percent of human RNA doesn't ...

Dark matter DNA active in brain during day-night cycle

September 24, 2012
(Medical Xpress)—Long stretches of DNA once considered inert dark matter appear to be uniquely active in a part of the brain known to control the body's 24-hour cycle, according to researchers at the National Institutes ...

RNA regulator of melanoma could be a new target for cancer therapy

May 10, 2012
Melanoma is the most deadly form of skin cancer, estimated by the National Cancer Institute to afflict more than 70,000 people in the United States annually and the incidence rate continues to rise. In a study published online ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.