RNA regulator of melanoma could be a new target for cancer therapy

May 10, 2012

Melanoma is the most deadly form of skin cancer, estimated by the National Cancer Institute to afflict more than 70,000 people in the United States annually and the incidence rate continues to rise. In a study published online in Genome Research, researchers have identified a previously unknown non-coding RNA that plays an important role in the biology of melanoma, a finding that could lead to a new target for therapy.

Most skin cancers are nonmelanomas, arising from cells other than melanocytes (the melanin-producing cells that are responsible for a suntan). Melanomas, skin cancers that arise from melanocytes, are less common but more dangerous because they can migrate deep into the skin to find blood and that help the tumor cells to grow and spread to other parts of the body.

Oncogenes are genes that have the potential to cause cancer, and are often mutated in , including melanomas. Mutations in the oncogene are present in more than 70% of melanomas, and the vast majority of BRAF mutants are a single mutant form, BRAFV600E. Inhibitors of BRAFV600E used in the clinic can induce , but patients eventually relapse.

In order to better understand the biology of oncogenic BRAF and identify new targets for therapy, researchers are investigating the RNA world of cancer. RNAs are the that the cell primarily uses to transmit the information stored in the DNA sequence, and translate it into . However, about 50% of transcribed RNAs actually code for no proteins at all, but many RNAs may still have critical regulatory roles to play.

In this report, a team of researchers led by Drs. Ross Flockhart and Paul Khavari of the Stanford University School of Medicine has delved into the RNA world of BRAFV600E melanomas by sequencing and analyzing the RNA "transcriptome" of patient samples. They looked for , including those that may never have been characterized before, that are rewired by BRAFV600E and may be relevant to melanoma.

"By digging deeper than ever before, we found more than 100 genes encoding long non-coding RNAs that are dramatically altered by BRAFV600E," said Flockhart. Long non-coding RNAs (lncRNAs) are garnering significant interest, as these molecules have been implicated in diverse cellular functions, but the role of lncRNAs in cancer is not well understood. Of the lncRNAs altered by BRAFV600E, Flockhart and colleagues homed in on a previously uncharacterized lncRNA gene that is recurrently and highly induced in melanomas, called BANCR. "Increased activation of the novel gene we discovered does not seem to be an isolated event," Flockhart noted. "It will be interesting to investigate if this is also the case in other cancers."

To test what role BANCR might be playing in melanoma, the team found that by turning off BANCR in the cancer cell by a technique called knockdown, the ability of the melanoma cells to migrate in a cell culture experiment was impaired. This indicates that BANCR is required for full migratory capacity in melanoma, and could be a potential target for therapy.

The authors explained that their work illustrates the power of RNA sequencing to study a cancer such as melanoma and identify a previously unknown regulator of disease progression. As studies such as this paint a more complete picture of cancer biology, we will have a better understanding of how tumors evade drugs, and how previously unknown players such as BANCR could be new targets for treatment.

Explore further: RNA spurs melanoma development

More information: Flockhart RJ, Webster DE, Qu K, Mascarenhas N, Kovalski J, Kretz M, Khavari PA. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res doi: 10.1101/gr.140061.112

Related Stories

RNA spurs melanoma development

May 10, 2011
Traditionally, RNA was mostly known as the messenger molecule that carries protein-making instructions from a cell's nucleus to the cytoplasm. But scientists now estimate that approximately 97 percent of human RNA doesn't ...

Second mutation in BRAF-mutated melanoma doesn't contribute to resistance

April 1, 2012
A second mutation found in the tumors of patients with BRAF-mutated metastatic melanoma does not contribute to resistance to BRAF inhibitor drugs, a finding that runs counter to what scientists expected to be true.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.