Melanoma transcriptome reveals novel genomic alterations not seen before

February 22, 2010, Cold Spring Harbor Laboratory

Melanoma, the most deadly form of skin cancer, afflicts more than 50,000 people in the United States annually and the incidence rate continues to rise. In a study published online in Genome Research, scientists have delved deeper than ever before into the RNA world of the melanoma tumor and identified genomic alterations that could play a role in the disease.

The latest high-throughput DNA sequencing technologies are ushering in a new era of discovery in cancer genomics that promises to reveal molecular mechanisms of the disease. Beyond cataloging the present in tumors, application of high-throughput sequencing to the RNA "transcriptome" can uncover other genomic alterations missed by DNA sequencing and identify potential targets for therapy.

For example, two adjacent genes can be transcribed together in a single "chimeric" RNA transcript. This RNA message is then translated into a protein with an altered or new function. In addition, rearrangements of the genome can cut and paste genes together, creating "gene fusions." These events occur in normal cells, but they also have the potential to cause disease. Recently these alterations have been detected a few tumor types, and it is very likely that more will be found in other cancers such as .

To capture the full spectrum of genomic alterations present in the expressed genes of melanoma, a team of researchers in the United States and Switzerland performed an integrative analysis of melanoma tumors using RNA sequencing and structural . The group identified 11 novel gene fusions involving several common cancer-related genes, and 12 cases of chimeric transcripts. "This is the first direct evidence for these types of genetic alterations in melanoma," said Michael Berger, a research scientist at the Broad Institute and first author of the report.

A particularly interesting finding was that a recurrent chimeric transcript was found involving the CDK2 gene, known to be required for melanoma cell proliferation. The authors suggest that the functional role of the aberrant CDK2 transcript is an attractive target of future investigation. In addition to novel gene fusions and chimeric transcripts, the research group also identified many other alterations in the melanoma tumors, including novel mutations, alternative splice variants, and expression changes.

Berger noted that this type of cancer transcriptome analysis is very appealing, as it complements common DNA-based genomic sequencing and characterization approaches to capture a more complete picture of the cancer genome. "Such studies should help reveal the cancer RNA world," added Levi Garraway, an Assistant Professor at Harvard Medical School/Dana-Farber Cancer Institute and the study's senior author, "thereby nominating many new genetic targets relevant to tumor biology and drug discovery."

More information: www.genome.org

Related Stories

Recommended for you

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.