Tumor-suppressing genes could play important role in obesity, diabetes and cancer

December 11, 2013

The function of two tumor-suppressing genes could play a vital role in helping to control obesity and other diseases such as diabetes, heart disease and cancer, according to researchers in Temple University's Sbarro Institute for Cancer Research and Molecular Medicine.

The researchers published their findings, "Silencing of RB1 and RB2/p130 during adipogenesis of stromal cells results in dysregulated differentiation," in the Feb. 1, 2014, issue (online Nov. 25) of the journal Cell Cycle.

"We found that these two genes of the retinoblastoma family, Rb1 and Rb2/p130, are key proteins in regulating the formation and function of fat tissue in the body," said Antonio Giordano, director of the Sbarro Institute and one of the paper's lead authors. "If these proteins are not functioning properly, they are unable to control the formation of fat tissue in the body, so you have a continuous formation of fat tissue."

Giordano said that many people believe that fat tissue is inert, but it is actually a very dynamic tissue and plays a very vital role in producing a number of important proteins in the human genome. "Everyone always thinks of fat tissue in negative terms," he said.

"Fat tissue does play an important function by producing molecules that assist bone marrow to function, grow and produce all three blood cell types: red, white and platelets," said Umberto Galderisi, associate professor of biology at the University of Naples in Italy and a co-author of the study. "But if Rb1 and/or Rb2/p130 are damaged, they can deregulate the fat tissue and cause an overproduction, which can alter the bone marrow's ability to produce those necessary blood cells."

In their paper, the researchers suggest that in addition to altering the bone marrow's ability to assist in the production of blood cells, the overproduction of can lead to obesity, which has been linked to several diseases, including diabetes, cardiovascular disease, , and in older people, anemia.

"Fat tissue may also feed and sustain the growth of in the body, which helps to explain the link between obesity and cancer," said Giordano, who discovered Rb2/p130 in the early 1990s while a researcher in Temple's Fels Institute for Cancer Research and Molecular Medicine.

Galderisi, also an adjunct professor of biology at Temple, said that understanding this mechanism for regulating the activity and the life of bone-marrow fat cells could pave the way for the development of therapies that might restore the proper function of fat cells, and be useful in the treatment of obesity and its related diseases.

Explore further: Fat in organs and blood may increase risk of osteoporosis

Related Stories

Fat in organs and blood may increase risk of osteoporosis

July 16, 2013
Excess fat around the belly has recently been identified as a risk factor for bone loss. Now, a new study has determined that excess liver and muscle fat also may be detrimental to bone.

Newly discovered human fat cell opens up new opportunities for future treatment of obesity

May 2, 2013
The body's brown fat cells play a key role in the development of obesity and diabetes. Researchers at Sahlgrenska Academy, University of Gothenburg, Sweden, have now discovered that we humans have two different kinds of brown ...

Newly discovered brown fat cells hold possibilities for treating diabetes, obesity

November 21, 2013
Obesity and diabetes have become a global epidemic leading to severe cardiovascular disease. Researchers at the University of Utah believe their recent identification of brown fat stem cells in adult humans may lead to new ...

Radiographic imaging exposes relationship between obesity and cancer

December 4, 2013
Researchers at the National Institute for Aging are working to improve understanding about obesity and cancer. A study, published today in the journal Applied Physiology, Nutrition, and Metabolism, is the first to use direct ...

Recommended for you

Study finds walnuts may promote health by changing gut bacteria

July 28, 2017
Research led by Lauri Byerley, PhD, RD, Research Associate Professor of Physiology at LSU Health New Orleans School of Medicine, has found that walnuts in the diet change the makeup of bacteria in the gut, which suggests ...

Green tea ingredient may ameliorate memory impairment, brain insulin resistance, and obesity

July 28, 2017
A study published online in The FASEB Journal, involving mice, suggests that EGCG (epigallocatechin-3-gallate), the most abundant catechin and biologically active component in green tea, could alleviate high-fat and high-fructose ...

Manipulating a type of brain cell gets weight loss results in mice

July 28, 2017
A new study has found something remarkable: the activation of a particular type of immune cell in the brain can, on its own, lead to obesity in mice. This striking result provides the strongest demonstration yet that brain ...

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.