Stimulating brain cells stops binge drinking, animal study finds

January 3, 2014 by Ellen Goldbaum, University at Buffalo
Stimulating brain cells stops binge drinking, animal study finds
Credit: University at Buffalo

Researchers at the University at Buffalo have found a way to change alcohol drinking behavior in rodents, using the emerging technique of optogenetics, which uses light to stimulate neurons.

Their work could lead to powerful new ways to treat alcoholism, other addictions, and neurological and mental illnesses; it also helps explain the underlying neurochemical basis of drug addiction.

The findings, published in November in Frontiers in Neuroscience, are the first to demonstrate a causal relationship between the release of dopamine in the brain and drinking behaviors of animals. Research like this, which makes it possible to map the neuronal circuits responsible for specific behaviors, is a major focus of President Obama's Brain Research for Advancing Innovative Neurotechnologies initiative, known as BRAIN.

In the experiments, rats were trained to drink alcohol in a way that mimics human binge-drinking behavior.

First author Caroline E. Bass, PhD, assistant professor of pharmacology and toxicology in the UB School of Medicine and Biomedical Sciences explains: "By stimulating certain dopamine neurons in a precise pattern, resulting in low but prolonged levels of , we could prevent the rats from binging. The rats just flat out stopped drinking," she says.

Bass's co-authors are at Wake Forest University, where she worked previously.

Interestingly, the rodents continued to avoid alcohol even after the stimulation of neurons ended, she adds.

"For decades, we have observed that particular brain regions light up or become more active in an alcoholic when he or she drinks or looks at pictures of people drinking, for example, but we didn't know if those changes in brain activity actually governed the alcoholic's behavior," says Bass.

The researchers activated the dopamine neurons through a type of , but unlike techniques now used to treat certain neurological disorders, such as severe tremors in Parkinson's disease patients, this new technique, called optogenetics, uses light instead of electricity to stimulate neurons.

"Electrical stimulation doesn't discriminate," Bass explains. "It hits all the neurons, but the brain has many different kinds of neurons, with different neurotransmitters and different functions. Optogenetics allows you to stimulate only one type of neuron at a time."

Bass specializes in using viral vectors to study the brain in substance abuse. In this study, she used a virus to introduce a gene encoding a light-responsive protein into the animals' brains. That protein then activated a specific subpopulation of dopamine neurons in the brain's reward system.

"I created a virus that will make this protein only in ," Bass says.

The neuronal pathways affected in this research are involved in many neurological disorders, she says. For that reason, the results have application not only in understanding and treating alcohol-drinking behaviors in humans, but also in many devastating mental illnesses and neurological diseases that have a dopamine component.

Bass notes that this ability to target genes to dopamine neurons could potentially lead to the use of gene therapy in the brain to mitigate many of these disorders.

"We can target dopamine neurons in a part of the brain called the nigrostriatal pathway, which is what degenerates in Parkinson's disease," she says. "If we could infuse a viral vector into that part of the brain, we could target potentially therapeutic genes to the involved in Parkinson's. And by infusing the virus into other areas of the , we could potentially deliver therapeutic genes to treat other neurological diseases and , including schizophrenia and depression."

Bass's co-authors are Evgeny Budygin, Valentina P. Grinevich, Dominic Gioia, Jonathan D. Day-Brown, Keith D. Bonin and Jeff Weiner, all of Wake Forest Baptist Medical Center, and Garret D. Stuber of the University of North Carolina Neuroscience Center.

Explore further: Researchers study alcohol addiction using optogenetics

Related Stories

Researchers study alcohol addiction using optogenetics

December 16, 2013
Wake Forest Baptist Medical Center researchers are gaining a better understanding of the neurochemical basis of addiction with a new technology called optogenetics.

Natural compound mitigates effects of methamphetamine abuse

November 19, 2013
Studies have shown that resveratrol, a natural compound found in colored vegetables, fruits and especially grapes, may minimize the impact of Parkinson's disease, stroke and Alzheimer's disease in those who maintain healthy ...

Using rabies virus, researcher tracks inputs to dopamine neurons

June 6, 2012
A genetically-modified version of the rabies virus is helping scientists at Harvard to trace neural pathways in the brain, a research effort that could one day lead to treatments for Parkinson's disease and addiction.

Study shines light on brain mechanism that controls reward enjoyment

March 21, 2012
What characterizes many people with depression, schizophrenia and some other mental illnesses is anhedonia: an inability to gain pleasure from normally pleasurable experiences.

Researchers find cocaine disinhibits natural inhibitor allowing continued release of dopamine

September 27, 2013
(Medical Xpress)—A team of researchers working at the University of Geneva and Geneva University Hospital have found during experiments with test mice, that injections of cocaine can cause naturally occurring inhibiting ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.