Researchers determine hormone linked to improved glucose metabolism activates browning of fat

January 9, 2014
C. Ronald Kahn, M.D., is Chief Academic Officer at Joslin Diabetes Center. Dr. Kahn is co-head of the section on Integrative Physiology & Metabolism and the Mary K. Iacocca Professor of Medicine at Harvard Medical School. Credit: John Soares

Researchers at Joslin Diabetes Center have discovered that a hormone long associated with weight loss and improved glucose metabolism is linked to activation of calorie-burning brown fat. This finding could have implications for production of new medications for type 2 diabetes and obesity. The results are published in the January issue of the Journal of Clinical Investigation in a paper titled "Interplay between FGF21 and Insulin Action in the Liver for the Regulation of Metabolism."

For the past decade, FGF21 has been known to play a role in metabolic regulation. Its mechanism of action, however, remained unidentified.

"So what we were interested in learning is how does FGF21 stimulate both and improve ," said C. Ronald Kahn, M.D., Chief Academic Officer at Joslin Diabetes Center, Mary K. Iacocca Professor of Medicine at Harvard Medical School, and the corresponding author on the paper. "And this study shows that one big factor in this is the ability of FGF21 to stimulate what's called browning of , that is where the white fat becomes more energetically active and begins to burn energy rather than store energy."

Brown fat, shown to exist in humans in 2009 by researchers at Joslin, burns calories to produce heat. White fat can act in a similar manner when stimulated, a process known as "browning." Determining stimulation mechanisms can provide researchers with a first step towards using brown fat as a treatment for obesity and .

FGF21 is secreted from the liver, prompting the researchers to question if its metabolic-related activity depended on molecular interactions within the liver tissues. They tested this using insulin resistant animal models created through two different methods—in one model, they created obesity-induced insulin resistance through a ; in the other, they knocked out the in liver tissues.

They then introduced FGF21 to the system continuously for two weeks via an inserted pump. During that time, they monitored weight, blood glucose levels, and lipid levels. After the two weeks ended, they harvested liver tissues to analyze their makeup.

"What we found was that even without insulin signaling in the liver, FGF21 could still improve glucose metabolism," said Dr. Kahn. To determine that the improvements were due to the browning of white fat, rather than the activation of brown fat, they surgically removed the pads of brown fat found in the animals, so that any fat-based energy burning would surely have to be a result of white fat browning.

"So in those animals, where most of the brown fat is removed, FGF 21 still works on the remaining white fat because of browning," he said.

FGF21 also regulates lipid metabolism, and that function was determined to be dependent on functioning insulin signaling in the liver.

Proving that FGF21 activates the browning of white fat is a large step forward in understanding the process of how variations of brown fat assist in metabolic regulation. Identifying this hormone as a major player in this activation has implications for the eventual creation of a stimulating drug.

"As with any new drug or hormone, of course we need to learn not only its good effects, but also any potential side effects," said Dr. Kahn. "And I think that's where a lot of the effort is now…by pharmaceutical companies."

Drug creation aside, Dr. Kahn thinks this discovery is interesting from a basic biology point of view.

"FGF 21 wasn't even known to exist until 10 years ago, and now we know it is a new circulating hormone, that is regulated in feeding and fasting," he said. "And I think that this is another piece of evidence that we don't understand all there is to know yet about metabolic regulation even though people have been studying it for literally hundreds of years."

Explore further: Hormone may help fight obesity and reduce cholesterol

Related Stories

Hormone may help fight obesity and reduce cholesterol

September 3, 2013
Research has shown that giving obese rodents a recently identified circulating protein called fibroblast growth factor 21 (FGF21) helps improve their metabolism. Now investigators reporting in the Cell Press journal Cell ...

Newly discovered brown fat cells hold possibilities for treating diabetes, obesity

November 21, 2013
Obesity and diabetes have become a global epidemic leading to severe cardiovascular disease. Researchers at the University of Utah believe their recent identification of brown fat stem cells in adult humans may lead to new ...

Antibody injection promising for diabetes and obesity

December 16, 2011
(Medical Xpress) -- Researchers at Genetech Inc. in South San Francisco, California, led by molecular biologist Junichiro Sonoda, have discovered that a single injection of antibodies into obese diabetic mice provided a marked ...

Drug boosts fat tissue's calorie-burning ability in lab

June 17, 2013
A drug that mimics the activity of thyroid hormone significantly increases the amount of energy burned by fat tissue and promotes weight loss, an animal study of metabolism finds. The results were presented Sunday at The ...

Newly discovered human fat cell opens up new opportunities for future treatment of obesity

May 2, 2013
The body's brown fat cells play a key role in the development of obesity and diabetes. Researchers at Sahlgrenska Academy, University of Gothenburg, Sweden, have now discovered that we humans have two different kinds of brown ...

Brown adipose tissue beneficial for metabolism and glucose tolerance

December 10, 2012
Joslin Diabetes Center scientists have demonstrated that brown adipose tissue (BAT) has beneficial effects on glucose tolerance, body weight and metabolism. The findings, which may lead to new treatments for diabetes, appear ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.