Timing mechanisms for memory formation

January 23, 2014, University of Leicester
Brain
Credit: University of Wisconsin and Michigan State Comparative Mammalian Brain Collections and the National Museum of Health and Medicine

Neuroscientists from the University of Leicester, in collaboration with the Department of Neurosurgery at the University California Los Angeles (UCLA), are to reveal details of how the brain determines the timing at which neurons in specific areas fire to create new memories.

This research exploits the unique opportunity of recording multiple single- in patients suffering from epilepsy refractory to medication that are implanted with intracranial electrodes for clinical reasons.

The study, which is to be published in the academic journal Current Biology, is the result of collaboration between Professor Rodrigo Quian Quiroga and Dr Hernan Rey at the Centre for Systems Neuroscience at the University of Leicester and Professor Itzhak Fried at UCLA.

The work follows up on the group's research into what was dubbed the 'Jennifer Aniston neurons' – neurons in the hippocampus and its surrounding areas within the brain that specifically fire in an 'abstract' manner when we see or hear a certain concept - such as a person, an animal or a landscape - that we recognise.

Professor Quian Quiroga said: "The firing of these neurons is relatively very late after the moment of seeing the picture, or hearing the person's name, but is still very precise. These neurons also fire only when the pictures are consciously recognised and remain silent when they are not.

"Our research shows that there is a specific that marks the timing of the firing of these neurons. This response shortly precedes the neuron's firing and is only present for the consciously recognised pictures - being absent if the pictures were not recognised.

"This brain response thus reflects an activation that provides a temporal window for processing consciously perceived stimuli in the hippocampus and surrounding cortex. Given the proposed role of these neurons in memory formation, we argue that the brain response we found is a gateway for processing consciously perceived stimuli to form or recall memories."

Dr Hernan Rey, first author of the study, added: "This time-keeping may indeed be critical for synchronizing and combining multisensory information involving different processing times. This, in turn, helps in creating a unified conceptual representation that can be used for memory functions."

Professor Quian Quiroga's work is specifically concerned with examining how information about the external world - what we see, hear and touch - is represented by neurons in the brain and how this leads to the creation of our own internal representations and memories.

For example, we can easily recognize a person in a fraction of a second, even when seen from different angles, with different sizes, colours, contrasts and under strikingly different conditions. But how neurons in the brain are capable of creating such an 'abstract' representation, disregarding basic visual details, is only starting to be known.

Explore further: Small groups of brain cells store concepts for memory formation– from Luke Skywalker to your grandmother

Related Stories

Small groups of brain cells store concepts for memory formation– from Luke Skywalker to your grandmother

February 23, 2013
Concepts in our minds – from Luke Skywalker to our grandmother - are represented by their own distinct group of neurons, according to new research involving a University of Leicester neuroscientist.

Neurons in brain's 'face recognition center' respond differently in patients with autism

November 20, 2013
In what are believed to be the first studies of their kind, Cedars-Sinai researchers recording the real-time firing of individual nerve cells in the brain found that a specific type of neuron in a structure called the amygdala ...

How vision captures sound now somewhat uncertain

January 16, 2014
(Medical Xpress)—When listening to someone speak, we also rely on lip-reading and gestures to help us understand what the person is saying.

New learning and memory neurons uncovered

April 11, 2013
(Medical Xpress)—A University of Queensland study has identified precisely when new neurons become important for learning.

The brain's neural thermostat

October 16, 2013
As we learn and develop, our neurons change. They make new pathways and connections as our brain processes new information. In order to do this, individual neurons use an internal gauge to maintain a delicate balance that ...

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.