Modernizing malaria research through a new, interdisciplinary approach

January 24, 2014 by Seth Palmer, Pennsylvania State University

(Medical Xpress)—Despite a relatively low incidence of malaria in the United States since the 1950s, the disease continues to pose a major threat to nearly half the world's population.

According to the World Health Organization (WHO), an estimated 3.4 billion people in 97 countries live in areas at risk of . In 2012, according to WHO estimates, there were 207 million cases of malaria worldwide resulting in 627,000 deaths.

"The literature on malaria is over a hundred years old," says Manuel Llinás, an associate professor of biochemistry and molecular biology at Penn State. "It's a very well-studied disease. It's one of the most classic illnesses of humankind. And yet we currently still have no great ways to actually tackle this thing."

The main reason for this, he argues, "is that we just simply don't understand the parasite that causes malaria very well yet."

Llinás has been working on malaria for nearly a decade, beginning with an early interest in emerging genome-sequencing technology.

"Initially," he explains, "I was working in a completely different field. But when the malaria genome was sequenced in 2004, it provided an opportunity to start asking genome-wide-level questions with regard to how the malaria parasite develops, and so we designed the first DNA microarray to be used to analyze the malaria parasite as it replicates in as it does during the infection."

Now, having firmly established itself in the malaria field, Llinás's lab focuses specifically on the 48-hour blood stage of the Plasmodium parasite.

Half of the lab's researchers are investigating the parasite's regulation of DNA transcription during the blood stage, "with the idea," says Llinás, "that if we can understand how the parasite's genes regulate its development in red blood cells, then we can attack it."

But of the roughly 5,400 genes in the Plasmodium genome, it's only for about half of them, Llinás notes, that "we can make good guesses at what they probably do. I look at the other half and wonder why there is 50 percent of this organism that we have no understanding of at all. I think it's likely that parasite-specific biological processes are functioning through those genes, and in there lies tremendous potential for coming up with new ways to attack the parasite."

So while some researchers in the Llinás Lab employ genomics techniques to better understand the Plasmodium parasite's blood-stage transcription regulation, other researchers study the parasite's metabolism during the blood stage, using mass spectrometry to examine small molecular byproducts of metabolism, known as metabolites.

"There's this new wave of research known as metabolomics," Llinás says, "and we jumped into this, being the first ones to start looking at the malaria parasite in this way. The idea is that if we can we understand the nutritional requirements between the host and the parasite – what molecules it takes in and what it spits back out, how we respond to those molecules, whether they're different from the ones we make – then that may open up the possibility for novel therapies targeting the parasite's metabolism."

As his approach to studying the Plasmodium parasite may suggest, Llinás isn't a classically trained parasitologist; but as a result, he says, "I feel like I come into this field with a lot of freedom to move through territory where there are currently a lot of biases."

Llinás recently moved his lab from Princeton University to the Millennium Science Complex at Penn State, where he will be launching the Center for Malaria Research (CMaR) this spring with a cadre of other well known and respected Penn State malaria researchers.

"My vision," says Llinás, "was to come here and build a small malaria research center around this group of people to really focus on this disease – to foster creative new research ideas, funding opportunities, and teaching outlets – and to draw on all the expertise we have around us."

"There are very few places in the world currently that have the capabilities that Penn State has to do all aspects of parasite biology," he declares. "I'm surrounded by people who work on all stages of the malaria parasite's development, on the ecology of the disease, people with field sites. Probably we're one of three places in the world currently that can move the malaria parasite from blood into mosquitoes, back into the liver, back into the blood, and complete the full cycle, asking any question along the whole trajectory of the complete life cycle of the – and that's very enviable."

"Of course," Llinás continues, "the Huck Institutes and my department in Biochemistry and Molecular Biology just have a tremendous number of resources and expertise in so many fields – biochemistry, genetics, parasitology, vector biology – all these things that are clearly really important to what we do in my lab."

Llinás also notes what he says is "a real strength at Penn State in genomics" research.

"To bring classic, traditional research into the 21st century," he says, "I'm all about trying to move us into the genome-centric world – how we do things at the cutting edge, just like is being done in human cancer studies or yeast biology or fly developmental biology – to really innovate and bring those kinds of tools to parasitology. I see a ton of opportunity here to do experiments that I would never have been able to do before coming to Penn State."

Explore further: Discovery may aid vaccine design for common form of malaria

Related Stories

Discovery may aid vaccine design for common form of malaria

January 9, 2014
A form of malaria common in India, Southeast Asia and South America attacks human red blood cells by clamping down on the cells with a pair of proteins, new research at Washington University School of Medicine in St. Louis ...

Cross-species malaria immunity induced by chemically attenuated parasites

July 1, 2013
Malaria, a mosquito-born infectious disease, kills over 600,000 people every year. Research has focused on the development of a vaccine to prevent the disease; however, many malaria vaccines targeting parasite antigens have ...

Australian researchers close in on malaria vaccine

July 2, 2013
Australian researchers said Tuesday they were closing in on a potential vaccine against malaria, with a study showing their treatment had protected mice against several strains of the disease.

Recommended for you

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

Research discovers possible link between Crohn's and Parkinson's in Jewish population

January 11, 2018
Mount Sinai Researchers have just discovered that patients in the Ashkenazi Jewish population with Crohn's disease (a chronic inflammatory of the digestive system) are more likely to carry the LRRK2 gene mutation. This gene ...

Scientists use gene expression to understand how astrocytes change with age

January 11, 2018
Potentially explaining why even healthy brains don't function well with age, Salk researchers have discovered that genes that are switched on early in brain development to sever connections between neurons as the brain fine-tunes, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.