A natural sugar delivers DNA aptamer drug inside tumor cells

January 27, 2014
©2014, Mary Ann Liebert, Inc., publishers

Drugs comprised of single strands of DNA, called aptamers, can bind to targets inside tumor cells causing cell death. But these DNA drugs cannot readily get inside tumor cells on their own. Effective delivery of DNA aptamers using a natural polysaccharide as a carrier is described in an article in Nucleic Acid Therapeutics.

Tatyana Zamay and coauthors, Krasnoyarsk State Medical University, Siberian Branch Russian Academy of Sciences, and Center for Reproductive Medicine (Krasnoyarsk, Russia), and University of Ottawa, Canada, combined the arabinogalactan, obtained from the larch tree, with a DNA drug that binds to and disrupts the activity of vimentin, a structural protein required for cell division. Vimentin is often over-produced by compared to normal cells.

In the article "DNA-Aptamer Targeting Vimentin for Tumor Therapy in Vivo" the authors show that an aptamer targeting vimentin inhibits tumor growth more effectively when it is administered as a mixture with arabinogalactan than alone.

"This work demonstrates the advancement of aptamer therapeutic application through increased bioavailability using a nontoxic polysaccharide based therapy," says Executive Editor Graham C. Parker, PhD.

Explore further: New study shows promise for preventing therapy resistance in tumor cells

Related Stories

New study shows promise for preventing therapy resistance in tumor cells

January 9, 2014
A new study led by University of Kentucky researchers suggests that activating the tumor suppressor p53 in normal cells causes them to secrete Par-4, another potent tumor suppressor protein that induces cell death in cancer ...

Macrophages target tumor cells following monoclonal antibody therapy

January 16, 2014
Monoclonal antibodies directed against tumor antigens have proven effective for treating some forms of cancer. Despite the increasing use of monoclonal antibody therapy, it is not clear how these antibodies drive tumor removal.

Researchers use DNA strands to build decomposable nanostructures

January 27, 2014
(Phys.org) —A team of researchers in Canada has found a way around the problem of large nanostructures that are used to combat tumors, remaining in the body after they are no longer needed. In their paper published in the ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.