Navel gazing: Healthy gut bacteria can help you stress less

January 13, 2014 by Chelsie Elise Rohrscheib, The Conversation
The trillions of bacteria in your gut can affect your brain – psychologically and physically. Helga Weber

Striking new evidence indicates that the gut microbiome, the ecological community of microorganisms that share our body, has a huge effect on brain function – much larger than we thought.

It has long been established that our gut acts as a second nervous system and is capable of functioning without input from the brain.

Nevertheless, the brain and gut are still intimately connected through a process called "the gut-brain axis", and changes to either system can have dramatic effects on the other.

The guts of both vertebrate and invertebrate animals are home to trillions of microorganisms, which primarily consist of mutualistic bacteria.

These resident bacteria play an essential role in many of our biological processes, such as supplying important nutrients, breaking down indigestible compounds and defending against other pathogenic microbes.

Bacterial composition has recently been correlated with several neurological disorders, especially those relating to anxiety. While the exact way affect the nervous system is unfortunately not yet entirely understood, scientists are working to answer this question by exploring brain function at the molecular level.

How do gut microbes affect the brain?

Two research teams headed by Rochellys Diaz Heijtz and Thomas Neufeld recently discovered that completely eliminating gut bacteria from mice had surprising effects on the animals' anxiety levels.

When tested under conditions that would normally induce stress, bacteria-free mice were found to have significantly less anxiety and anxiety-associated behaviours than the mice with normal intestinal microbes. This was one of the first instances showing that the gut microbes may play a role in mental disorders.

To investigate why removing the correlated with reduced anxiety, both teams explored the possibility that may influence the activation of genes important for brain function.

Navel gazing: Healthy gut bacteria can help you stress less
Credit: Aaron Logan

Specifically, the activity of genes involved in regulating neuron survival and signalling—along with genes that encode for receptors that bind important neurotransmitters - were changed. For instance, several neurotransmitters, including serotonin, were altered within regions of the brain associated with motor control and anxiety-like behaviour in bacteria-free mice.

This hints that have some level of influence on DNA transcription – especially on genes that are essential for .

Gut flora may also alter the way the brain changes during the earliest stages of life. Young, microbe-free mice were reconstituted with normal levels of intestinal flora to examine how these bacteria affects neurogenesis, the process where neurons are generated from stem cells and progenitor cells during pre-natal development.

As a result of these tests, activation of genes responsible for the maturation of neurons was found to be increased. This demonstrates that may be essential for proper brain development during the foetal stage.

Gut bacteria, therefore, seems to play an essential role in neuronal growth. As bacteria colonise the gut in the days following birth – a sensitive period for brain development – poor establishment of the microbiome may potentially lend to the occurrence of anxiety-based disorders.

The key players: identifying important bacteria

While these studies have revealed that removing our gut microbes has serious effects on the brain, it begs the questions of whether specific types of bacteria are more important for neural function than others. This is becoming clear as scientists explore associated with some of our most common species.

For instance, in 2011, researchers in Ireland discovered that mice treated with the common probiotic bacterium Lactobacillus rhamnosus had reduced stress hormone and anxiety related behaviours.

L. rhamnosus was later found to influence gamma-Aminobutyric acid (GABA), the primary central nervous system inhibitory neurotransmitter involved in regulating countless processes.

Navel gazing: Healthy gut bacteria can help you stress less
Lactobacillus bacteria. Credit: AJ Cann

GABA or GABA receptors are associated with the development of anxiety and depression, suggesting that this particular probiotic helps to normalise GABA in the brain and consequently reduce stress.

Microbes as a treatment option

Together, these recent findings highlight the important role of bacteria in the communication between the gut and the . Our increasing knowledge of how human mental illnesses – such as autism, anxiety, and depression – are linked to gut flora may lead to future treatments of mental illness.

This could include administration of probiotics or faecal transplant procedures that would modify gut flora community structures. Already, studies doing exactly this through clinical trials show promising results, with many patients reporting improved mental health after high-dose treatments.

Our knowledge of this specific area of neuroscience is expanding quickly, but in order to advance this emerging field of medical research, we will require experimental approaches that more accurately describe the microbial community of the gut and identify other behaviour-modifying species.

In addition, experiments that seek to either alter microbial communities or the molecular signals employed by microbes will be critical to the development of new therapeutics.

These continuing discoveries may finally prove once and for all that our fears and anxieties are not actually all in our head. We should attempt to rely more on our .

Explore further: Research uncovers the "gut-brain axis"

Related Stories

Research uncovers the "gut-brain axis"

November 27, 2013
Striking new evidence indicates that the gut microbiome, the ecological community of microorganisms that share our body, has a huge effect on brain function – much larger than we thought.

Gut microbes may be a risk factor for colorectal cancer

December 6, 2013
In one of the largest epidemiological studies of human gut bacteria and colorectal cancer ever conducted, a team of researchers at NYU Langone Medical Center has found a clear association between gut bacteria and colorectal ...

Research linking autism symptoms to gut microbes called 'groundbreaking'

December 19, 2013
A new study showing that feeding mice a beneficial type of bacteria can ameliorate autism-like symptoms is "groundbreaking," according to University of Colorado Boulder Professor Rob Knight, who co-authored a commentary piece ...

Study shows moms may pass effects of stress to offspring via vaginal bacteria and placenta

November 11, 2013
Pregnant women may transmit the damaging effects of stress to their unborn child by way of the bacteria in their vagina and through the placenta, suggest new findings from two animal studies presented by researchers at the ...

Your gut's what you eat, too

January 3, 2014
As the saying goes, you are what you eat. But new evidence suggests that the same may also be true for the microbes in your gut.

Recommended for you

Researchers develop novel bioengineering technique for personalized bone grafts

July 18, 2018
Scientists from the New York Stem Cell Foundation (NYSCF) Research Institute have developed a new bone engineering technique called Segmental Additive Tissue Engineering (SATE). The technique, described in a paper published ...

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

New study finds that fat consumption is the only cause of weight gain

July 13, 2018
Scientists from the University of Aberdeen and the Chinese Academy of Sciences have undertaken the largest study of its kind looking at what components of diet—fat, carbohydrates or protein—caused mice to gain weight.

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.