Protein molecule may offer method for treating untreatable cancers

January 22, 2014 by Mattie Bekink

The effective treatment of cancer requires the ability to destroy cancerous cells. Nearly one-third of all cancers today involve mutations of the Kras gene, which has proven resistant to existing cancer treatments. The current prognosis for patients with mutant Kras cancers is poor because there is no effective treatment. However, recent analysis by Valerie Wells of NYU London and Livio Mallucci of King's College London may present a new method to combat these untreatable cancers.

In a feature article in Drug Discovery Today, Wells and Mallucci discuss the current therapeutic strategies and their limitations, highlighting a new way forward using the recombinant form of a physiological protein molecule, beta-GBP, which has proven to be effective against human Kras-driven tumors in animal models.

There are several significant aspects to their discovery. First, the beta-GBP molecule they have identified kills mutant Kras and other cancer cells by activating alternative routes to destroy cancer while leaving normal cells unharmed. Second, the beta-GBP molecule is naturally occurring in the body and therefore would avoid the complexity of current combinatorial therapies and the issues of drug resistance, toxicity and all side effects experienced with chemotherapy. Finally, translation of beta-GBP to the clinic, facilitated by its physiological nature, could open a new therapeutic opportunity representing a significant step forward in the treatment of cancers resistant to all current methods.

Explore further: Research shows molecular, protein targeting therapies may be best treatment for certain lung cancer

More information: Livio Mallucci, Valerie Wells, "The end of KRAS and other cancers? A new way forward." Drug Discovery Today, Available online 27 November 2013, ISSN 1359-6446, dx.doi.org/10.1016/j.drudis.2013.11.018.

Related Stories

Research shows molecular, protein targeting therapies may be best treatment for certain lung cancer

January 7, 2014
University of Cincinnati (UC) Cancer Institute researchers have found that using therapies specifically targeting the molecular profile of non-small-cell lung cancer with the mutated cancer-causing protein KRas is the most ...

Combination therapies for drug-resistant cancers

October 10, 2011
Some cancers can be effectively treated with drugs inhibiting proteins known as receptor tyrosine kinases, but not those cancers caused by mutations in the KRAS gene. A team of researchers led by Jeffrey Engelman, at Massachusetts ...

KRAS gene mutation and amplification status affects sensitivity to antifolate therapy

April 4, 2012
Testing patients with non-small cell lung cancer for both mutations and amplifications of the KRAS gene prior to therapy may help to predict response to treatment with antifolates, according to the updated results of a preclinical ...

New drug combinations may benefit patients with pancreatic cancer

October 21, 2013
Two drug combinations that simultaneously block two major signaling pathways downstream of the protein KRAS, which is aberrantly active in most pancreatic cancers, may provide a new treatment option for patients with this ...

Scientists identify possible KRAS downstream target for pancreatic cancer therapy

May 28, 2013
While the mutated KRAS oncogene is associated with many cancers, it has not yet been successfully targeted by a therapeutic agent. Scientists are trying to find another way to target the gene by blocking signals from another ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.