Research reveals new therapeutic target for Huntington's disease

January 8, 2014, University of Western Ontario

Research from Western University (London, Canada) has revealed a possible new target for treating movement disorders such as Huntington's disease (HD) and Parkinson's disease. Stephen Ferguson, PhD, a scientist at Western's Robarts Research Institute, and Fabiola Ribeiro, PhD, of the Universidade Federal de Minas Gerais in Brazil found a definite improvement in motor behaviors in a HD mouse model when one of the major neurotransmitters in the brain, called Metabotropic Glutamate Receptor 5 (mGluR5) was deleted. The research is published online in Human Molecular Genetics.

HD is an inherited neurodegenerative disorder which causes uncontrolled movement, and eventually cognitive decline and emotional disturbances.

Working in the Ferguson lab where Ribeiro was a postdoctoral trainee, the scientists crossed two mouse models. One was a mouse which doesn't have glutamate receptors –they've been knocked out genetically, and the other is a HD which over-expresses mutant human Huntington protein. They found if they deleted mGluR5, they lost the pathology of Huntington's in the neurons, and they saw improvements in motor behavior which normally would be impaired in these mice.

Stephen Ferguson, Ph.D., a scientist at Western University's Robarts Research Institute found a definite improvement in motor behaviours in a Huntington's disease mouse model when one of the major neurotransmitters in the brain, called Metabotropic Glutamate Receptor 5 was deleted. Credit: Western University

"What we found was, if we block mGluR5, which is the we're interested in, the mice become hyper locomotive so they become able to move better than wild type mice suggesting glutamate receptors might be a good target for treating movement disorders such as Parkinson's disease. So that was a bit of a surprise that came out in the study, and we can show that genetically and pharmaceutically," says Ferguson who holds a Canada Research Chair in Molecular Neurobiology. "And the good thing is, there are mGluR5 antagonists now in stage three clinical trials for diseases such as Fragile X, so it is quite possible these drugs will be available for patients in the future."

Explore further: Neurologists finds potential route to better treatments for Fragile X, autism

Related Stories

Neurologists finds potential route to better treatments for Fragile X, autism

October 23, 2013
When you experience something, neurons in the brain send chemical signals called neurotransmitters across synapses to receptors on other neurons. How well that process unfolds determines how you comprehend the experience ...

Alzheimer's missing link found

September 4, 2013
Yale School of Medicine researchers have discovered a protein that is the missing link in the complicated chain of events that lead to Alzheimer's disease, they report in the Sept. 4 issue of the journal Neuron. Researchers ...

Research targets brain region affected by Parkinson's

November 8, 2011
A team of researchers at The University of Western Ontario has demonstrated that elimination of one of the neurotransmitters in the part of the brain associated with Parkinson's disease may improve brain function without ...

Drug reduces brain changes, motor deficits associated with Huntington's disease

November 26, 2013
A drug that acts like a growth-promoting protein in the brain reduces degeneration and motor deficits associated with Huntington's disease in two mouse models of the disorder, according to a study appearing November 27 in ...

Melatonin delays onset, reduces deaths in mouse model of Huntington's disease

October 11, 2011
Melatonin, best known for its role in sleep regulation, delayed the onset of symptoms and reduced mortality in a mouse model of Huntington's disease, say researchers at the University of Pittsburgh School of Medicine and ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.