Drug reduces brain changes, motor deficits associated with Huntington's disease

November 26, 2013

A drug that acts like a growth-promoting protein in the brain reduces degeneration and motor deficits associated with Huntington's disease in two mouse models of the disorder, according to a study appearing November 27 in the Journal of Neuroscience. The findings add to a growing body of evidence that protecting or boosting neurotrophins—the molecules that support the survival and function of nerve cells—may slow the progression of Huntington's disease and other neurodegenerative disorders.

Huntington's is a brain disorder characterized by the emergence of decreased motor, cognitive, and psychiatric abilities, most commonly appearing in the mid-30s and 40s. The disease is caused by a genetic mutation that leads to abnormal clumps of protein in the brain, eventually resulting in the atrophy and death of . While there are drugs to alleviate some symptoms of the disease, there are currently no therapies to delay the onset or slow its progression.

Previous studies of people with Huntington's disease point to a link between low levels of a neurotrophin called brain-derived neurotrophic factor (BDNF) and symptoms of the disorder. In the current study, Frank Longo, MD, PhD, and others at Stanford University, tested LM22A-4, a drug that specifically binds to and activates the BDNF receptor TrkB on nerve cells, in mice that model the disorder. They found LM22A-4 reduces abnormal protein accumulation, delays nerve cell degeneration, and improves motor skills in the animals. The findings support other recent rodent studies that showed drugs that enhance the action of BDNF can reduce brain changes and symptoms of Huntington's disease.

"These results strongly suggest that drugs that act, in part, like BDNF could be effective therapeutics for treating Huntington's disease and other ," Longo said.

How quickly the symptoms of Huntington's disease progress in people vary greatly. Longo's group examined the effects of LM22A-4 treatment in mice that were predisposed to develop symptoms of Huntington's disease rapidly (within weeks) or gradually (within months). LM22A-4 treatment reduced the accumulation of abnormal proteins in the striatum and cortex—brain regions affected in Huntington's disease. Motor behaviors (downward climbing and grip strength) also improved in the mice that received LM22A-4 treatments daily.

"The search for treatments that slow the progression of has gradually shifted from ameliorating to finding agents that reduce the progression of the disease," said Gary Lynch, PhD, who studies neurodegeneration at the University of California, Irvine, and was not involved with this study. "Given that this drug is clinically plausible, these results open up exciting possibilities for treating a devastating neurodegenerative disease," he added.

Explore further: Research points to biomarker that could track Huntington's disease progression

Related Stories

Research points to biomarker that could track Huntington's disease progression

July 8, 2013
A hallmark of neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's is that by the time symptoms appear, significant brain damage has already occurred—and currently there are no treatments that can ...

Researchers track Huntington's disease progression using PET scans

August 29, 2013
Investigators at The Feinstein Institute for Medical Research have discovered a new way to measure the progression of Huntington's disease, using positron emission tomography (PET) to scan the brains of carriers of the gene. ...

Breakthrough on Huntington's disease

May 23, 2013
Researchers at Lund University have succeeded in preventing very early symptoms of Huntington's disease, depression and anxiety, by deactivating the mutated huntingtin protein in the brains of mice.

Compound may provide drug therapy approach for Huntington's disease

June 23, 2011
UT Southwestern Medical Center researchers have identified compounds that appear to inhibit a signaling pathway in Huntington's disease, a finding that may eventually lead to a potential drug therapy to help slow the progression ...

New clue on the origin of Huntington's disease

August 12, 2013
The synapses in the brain act as key communication points between approximately one hundred billion neurons. They form a complex network connecting various centres in the brain through electrical impulses. New research from ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.