Researchers track Huntington's disease progression using PET scans

August 29, 2013, North Shore-Long Island Jewish Health System

Investigators at The Feinstein Institute for Medical Research have discovered a new way to measure the progression of Huntington's disease, using positron emission tomography (PET) to scan the brains of carriers of the gene. The findings are published in the September issue of The Journal of Clinical Investigation.

Huntington's disease causes the progressive breakdown of in the brain, which leads to impairments in movement, thinking and emotions. Most people with Huntington's disease develop signs and symptoms in their 40s or 50s, but the onset of disease may be earlier or later in life. Medications are available to help manage the symptoms of Huntington's disease, but treatments do not prevent the physical, mental and behavioral decline associated with the condition.

Huntington's disease is an inherited disease, passed from parent to child through a mutation in the normal gene. Each child of a parent with Huntington's disease has a 50/50 chance of inheriting the Huntington's , and a child who inherits the gene will eventually develop the disease. Genetic testing for Huntington's disease can be performed to determine whether a person carries the gene and is developing the disease even before symptoms appear. Having this ability provides an opportunity for scientists to study how the disease first develops and how it progresses in its early, presymptomatic stages. Even though a carrier of the Huntington's disease gene may not have experienced symptoms, changes in the brain have already taken place, which ultimately lead to severe disability. Brain imaging is one tool that could be used to track how quickly Huntington's disease progresses in gene carriers. Having a better way to track the disease at its earliest stages will make it easier to test drugs designed to delay or even prevent the onset of symptoms.

Researchers at the Feinstein Institute used PET scanning to map changes in in 12 people with the Huntington's disease gene who had not developed clinical signs of the illness. The researchers scanned the subjects repeatedly over a seven-year period and found a characteristic set (network) of abnormalities in their brains. The network was used to measure the rate of disease progression in the study participants. The Feinstein Institute investigators then confirmed the progression rate through independent measurements in scans from a separate group of Huntington's disease gene carriers who were studied in the Netherlands. The investigators believe that progression networks similar to the one identified in Huntington's disease carriers will have an important role in evaluating new drugs for degenerative brain disorders.

"Huntington's disease is an extremely debilitating disease. The findings make it possible to evaluate the effects of new drugs on disease progression before symptoms actually appear. This is a major advance in the field," said David Eidelberg, MD, Susan and Leonard Feinstein Professor and head of the Center for Neurosciences at the Feinstein Institute.

Explore further: Breakthrough on Huntington's disease

More information: Metabolic Network as a Progression Biomarker of Premanifest Huntington's Disease, J Clin Invest. 2013;123(9):4076–4088. DOI: 10.1172/JCI69411

Related Stories

Breakthrough on Huntington's disease

May 23, 2013
Researchers at Lund University have succeeded in preventing very early symptoms of Huntington's disease, depression and anxiety, by deactivating the mutated huntingtin protein in the brains of mice.

Research points to biomarker that could track Huntington's disease progression

July 8, 2013
A hallmark of neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's is that by the time symptoms appear, significant brain damage has already occurred—and currently there are no treatments that can ...

New clue on the origin of Huntington's disease

August 12, 2013
The synapses in the brain act as key communication points between approximately one hundred billion neurons. They form a complex network connecting various centres in the brain through electrical impulses. New research from ...

Study puts Huntington's disease trials on TRACK

May 21, 2013
(Medical Xpress)—A three-year multinational study has tracked and detailed the progression of Huntington's disease (HD), predicting clinical decline in people carrying the HD gene more than 10 years before the expected ...

Potential molecular defence against Huntington's disease discovered

August 25, 2013
Leicester geneticists have discovered a potential defence against Huntington's disease – a fatal neurodegenerative disorder which currently has no cure.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.