New RNA interference technique finds seven genes for head and neck cancer

January 24, 2014, Rockefeller University
New RNA interference technique finds seven genes for head and neck cancer
Interfering with cancer. A section of a head and neck tumor — red and green markers show the proliferation of cancer stem cells — that formed when one of several newly characterized genes, Myh9, was suppressed. A recently developed genetic screening technique using RNA interference identified Myh9’s protein, myosin IIa, as playing an important role in tumor suppression.

(Medical Xpress)—In the hunt for genetic mutations that cause cancer, there is a lot of white noise. So although genetic sequencing has identified hundreds of genetic alterations linked to tumors, it's still an enormous challenge to figure out which ones are actually responsible for the growth and metastasis of cancer. Scientists in Rockefeller's Laboratory of Mammalian Cell Biology and Development have created a new technique that can weed out that noise—eliminating the random bystander genes and identifying the ones that are critical for cancer. Applying their technique to head and neck cancers, they've discovered seven new tumor-suppressor genes whose role in cancer was previously unknown.

The new technique, which the lab recently applied to a screen for skin tumor genes, is particularly useful because it takes a fraction of the resources and much less time than the traditional method for determining gene function—breeding genetically modified animals to study the impact of missing genes.

"Using knockout mice, which are model organisms bred to have a particular gene missing, is not feasible when there are 800 potential head and neck genes to sort through," says Daniel Schramek, a postdoctoral fellow in the lab, which is headed by Rebecca C. Lancefield Professor Elaine Fuchs. "It can take about two years per gene. Our method can assess about 300 genes in a single mouse, in as little as five weeks."

The researchers made use of RNA interference, a natural process whereby RNA molecules inhibit gene expression. They took short pieces of RNA which are able to turn off the function of specific genes, attached them to highly concentrated viruses, and then, using ultrasound to guide the needle without damaging surrounding tissue, they injected the viruses into the sacs of mouse embryos.

"The virus is absorbed and integrated into the chromosomes of the single layer of surface cells that cover the tiny embryo," explains Fuchs. "As the embryo develops, this layer of cells becomes the skin, mammary glands and oral tissue, enabling us to efficiently, selectively and quickly eliminate the expression of any desired gene in these tissues. The non-invasive method avoids triggering a wound or inflammatory response that is typically associated with conventional methods to knockdown a gene in cultured cells and then engraft the cells onto a mouse."

When the mice grew, the researchers determined which genes, when turned off, were promoting tumor growth, and what they found was surprising.

"Among the seven novel we found, our strongest hit was Myh9, which codes for the protein myosin IIa, a motor protein with well-known function in cell structure and cell migration," says Schramek. "Through further functional studies we found that myosin IIa is also required for activation of the main guardian of the genome—a tumor suppressor protein called p53."

The lab showed that when the myosin IIa gene was mutated, p53 was not able to build up in the cell nucleus, and chaos ensued: genes responsible for repairing damaged cells and killing off tumor cells were not activated, and invasive carcinomas spread within three months.

The researchers devised a strategy to reactivate p53 in these cells, and showed in vitro that tumor suppression was restored. "Head and neck cancers are the sixth most deadly type of cancer worldwide. Interestingly, Myh9 is also mutated in human head and neck cancers, and low expression of myosin IIa correlates with poor prognosis for the patient," says Fuchs. The group hopes to examine the effect in clinical trials in the future, and plans to look at the function of the other six genes their study identified.

"We've demonstrated that this method of RNA interference is highly useful in the rapid discovery, validation and characterization of that might otherwise be missed in a genetic screen," says Schramek. "It can be applied to many kinds of cancers, such as breast and lung."

Explore further: Study using RNAi reveals previously unknown mice genes linked to cancer development

More information: "Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas." Daniel Schramek, Ataman Sendoel, Jeremy P. Segal, Slobodan Beronja, Evan Heller, Daniel Oristian, Boris Reva and Elaine Fuchs Science 343: 309–313 (January 17, 2014) DOI: 10.1126/science.1248627

Related Stories

Study using RNAi reveals previously unknown mice genes linked to cancer development

January 17, 2014
(Medical Xpress)—A combined team of researchers from Howard Hughes Medical Institute and the Icahn School of Medicine has discovered a previously unknown link between absent genes and the growth of tumors. In their paper ...

New technique in RNA interference cuts time and cost in genetic screens

August 15, 2013
(Medical Xpress)—There is a new contender in the field of gene discovery, and it's giving knockout mice a run for their money. Researchers at The Rockefeller University have shown that a new technique using RNA interference ...

Researchers discover a tumor suppressor gene in a very aggressive lung cancer

January 9, 2014
The Genes and Cancer Group at the Cancer Epigenetics and Biology Program of the IDIBELL has found that the MAX gene, which encodes a partner of the MYC oncogene, is genetically inactivated in small cell lung cancer. Reconstitution ...

Awakening genes that suppress tumors

October 10, 2013
(Medical Xpress)—When genes that normally suppress tumor growth are themselves suppressed, cancer cells can grow and proliferate uncontrollably. A new study led by a researcher at Yale University has uncovered the pathway ...

New study shows promise for preventing therapy resistance in tumor cells

January 9, 2014
A new study led by University of Kentucky researchers suggests that activating the tumor suppressor p53 in normal cells causes them to secrete Par-4, another potent tumor suppressor protein that induces cell death in cancer ...

New cell mechanism discovery key to stopping breast cancer metastasis

January 2, 2014
Researchers from Huntsman Cancer Institute (HCI) at the University of Utah discovered a cellular mechanism that drives the spread of breast cancer to other parts of the body (metastasis), as well as a therapy which blocks ...

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.