New surgical 'smart patch' for shoulder injury to be tested

January 3, 2014

An innovative 'surgical patch' that promotes rapid regrowth of tendon tissue could transform the success of shoulder repair operations.

The patch will be used by surgeons to repair torn tendon tissue, and patient trials are expected to begin this year.

Made from a new material developed by a team of surgeons, engineers and biochemists in Oxford, the 'smart patch' promotes rapid regrowth of damaged tissue ensuring the injury heals more quickly and more successfully.

The project is a collaboration between the University of Oxford and Oxford University Hospitals NHS Trust, and is funded by the National Institute for Health Research (NIHR) Oxford Biomedical Research Unit and the Medical Research Council.

Andy Carr, an Oxford University Hospitals surgeon and Nuffield Professor of Orthopaedic Surgery at the University of Oxford, led the development of the patch. It has been designed to repair damage to the rotator cuff, the group of tendons and muscles that controls movement of the shoulder.

More than 10,000 rotator cuff repairs are performed in the UK each year (more than 300,000 are performed in the US), and the group's own research has shown that between 25% and 50% will fail to heal properly.

'Around a third of the population will suffer from shoulder pain due to tendon disease at some time in their life, making it the third most common musculoskeletal complaint,' said Professor Carr of the Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences at Oxford University.

'This type of injury will not kill you but it can seriously affect your quality of life. Patients are often in a lot of pain, with severely restricted movement. In some cases it can affect your livelihood and in older people it can affect independence. This will become more and more of a problem as the population ages and the retirement age is increased.'

Professor Carr said the failure rate of surgery was due to the fact that the body was failing to repair properly after surgery. To improve the outcomes of surgery, the team have designed a material that mimics the normal environment that cells require in order to mount a successful repair.

He added: 'The key to the new patch is creating a composite of two material layers. One layer is a very fine "nanoscale" synthetic mesh that is recognised by cells and which promotes growth of new tissue. Our patch provides the physical cues needed for normal growth and development.

'However, because this fine mesh is relatively flimsy, a second woven layer of thicker strands is bonded to it to provide strength. This stronger layer means the scaffold can be sutured in position by a surgeon. It also protects the repair during the six to eight weeks required for tissue healing.'

An additional and important feature is that the scaffold degrades and is absorbed by the body after three to six months, leaving no foreign material in the long term.

With an expected price tag of less that £1,500, the new patch could offer effective treatment at a fraction of the cost of alternatives such as the use of stem cells or growth factors. Given the increasing number of operations being carried out, this will be a significant consideration.

Professor Carr said: 'One of the great strengths here in Oxford is having clinicians, engineers, biochemists and other specialists working together across the partnership between the University of Oxford and Oxford University Hospitals NHS Trust. This multidisciplinary approach means that when unsolved clinical problems are identified we can investigate the cause, then develop a solution, before returning to clinic to test if it helps patients. It's a bedside to bench and back again journey.'

Patient trials of the new patch are set to begin next year. Professor Carr added: 'If successful, the has the potential to be adapted for use in other tissue repair operations such as heart surgery, hernia repair, bladder and the treatment of early arthritis.'

Explore further: Working toward injectable therapy for rotator cuff injuries

Related Stories

Working toward injectable therapy for rotator cuff injuries

November 27, 2013
(Medical Xpress)—For a baseball pitcher, a rotator cuff injury often means an extended stay on the disabled list for surgery and rehabilitation of the damaged tendons. But a new technology under development may stop this ...

Scientists identify superior heart repair product

September 10, 2013
A regenerative tissue product developed by a Perth health care group has the potential to help tissue heal better than existing products when used in cardiac repairs.

Study finds biomaterials repair human heart

December 11, 2013
Clemson University biological sciences student Meghan Stelly and her father, Alabama cardiovascular surgeon Terry Stelly, investigated a biomedical application following a coronary artery bypass surgery and found that the ...

New health economics study highlights long-term benefits of rotator cuff surgery

November 20, 2013
Each year, close to 2 million people in the United States visit their doctor for shoulder pain associated with a rotator cuff injury. Approximately one-third of rotator cuff tears will require surgery, with the remaining ...

More data on knee replacements needed

March 7, 2012
(Medical Xpress) -- Oxford University experts have called for better monitoring of knee replacement surgery to improve outcomes for patients.

Recommended for you

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.