Team develops method of identifying impact of gut microbes

January 23, 2014 by Bob Yirka report
Overview of combinatorial out-of-the-isolator gnotobiotics screen for identifying microbephenotype relationships. Credit: Sci. Transl. Med. 6, 220ra11 (2014).

(Medical Xpress)—A team of researchers at Washington School of Medicine in St. Lois has developed a method for identifying the impact that individual strains of microbes in the human gut have on the person housing them. In their paper published in the journal Science Translational Medicine, the team describes how they isolated different microbes taken from human volunteers and placed them in the guts of sterilized mice, and then tested them to see what impact it had.

Over the past few decades, scientists have come to realize that microbes in our guts play a far more important role in our lives than anyone might have ever thought possible. Scientists now know that in addition to helping us ward off diseases and digest our food, microbes are also in part responsible for how much fat our bodies hold onto and for causing ailments such as colitis, Irritable Bowel Syndrome or Crohn's Disease.

As more has become known about the impact of microbes in our gut, it's become clear that a means for figuring out which do what would be very helpful for treating ailments or even for helping lose weight. The problem with doing so is there are trillions of such microbes in our guts, with perhaps 10,000 different species. Undaunted, the researchers with this new effort have developed a method for doing so anyway.

In order to understand what a microbe does, the researchers reasoned, it must be isolated and allowed to do whatever it does under close scrutiny. To achieve that goal, they collected fecal specimens from several human volunteers, took them to a lab and separated out 94 different microbe varieties. Each was then introduced individually into the gut of a mouse that had had its gut cleared of all microbes. Thus, the team was able to monitor the impact of each single microbe on the mouse being tested.

In so doing, the team discovered that introducing one of eight types of microbes into their guts caused the mice to gain weight. A mouse with no is generally very thin, as it gets no help with digesting food, thus the bacteria introduced have now been identified as being among those that impact fat retention—a development that could at some point result in a probiotic pill for humans that have trouble digesting certain foods.

The method is slow of course, but so is a lot of scientific research. The point is that the process appears to be one that will allow researchers over time to identify which microbes do what. That won't reveal all of course, as scientists know that sometimes some impacts on the body are the result of intermingling of microbes, but it appears to be a great start in mapping .

Explore further: Gut microbes may be a risk factor for colorectal cancer

More information: J. J. Faith, P. P. Ahern, V. K. Ridaura, J. Cheng, J. I. Gordon, Identifying Gut Microbe–Host Phenotype Relationships Using Combinatorial Communities in Gnotobiotic Mice. Sci. Transl. Med. 6, 220ra11 (2014).


Identifying a scalable, unbiased method for discovering which members of the human gut microbiota influence specific physiologic, metabolic, and immunologic phenotypes remains a challenge. We describe a method in which a clonally arrayed collection of cultured, sequenced bacteria was generated from one of several human fecal microbiota samples found to transmit a particular phenotype to recipient germ-free mice. Ninety-four bacterial consortia of diverse size, randomly drawn from the culture collection, were introduced into germ-free animals. We identified an unanticipated range of bacterial strains that promoted accumulation of colonic regulatory T cells (Tregs) and expansion of Nrp1lo/− peripheral Tregs, as well as strains that modulated mouse adiposity and cecal metabolite concentrations, using feature selection algorithms and follow-up monocolonizations. This combinatorial approach enables a systems-level understanding of microbial contributions to human biology.

Related Stories

Gut microbes may be a risk factor for colorectal cancer

December 6, 2013

In one of the largest epidemiological studies of human gut bacteria and colorectal cancer ever conducted, a team of researchers at NYU Langone Medical Center has found a clear association between gut bacteria and colorectal ...

'Unhealthy' changes in gut microbes benefit pregnant women

August 2, 2012

The composition of microbes in the gut changes dramatically during pregnancy, according to a study published by Cell Press in the August 3rd issue of the journal Cell. Although these changes are associated with metabolic ...

Recommended for you

Success in the 3-D bioprinting of cartilage

April 28, 2017

A team of researchers at Sahlgrenska Academy has managed to generate cartilage tissue by printing stem cells using a 3-D-bioprinter. The fact that the stem cells survived being printed in this manner is a success in itself. ...

Mouse teeth providing new insights into tissue regeneration

April 27, 2017

Researchers hope to one day use stem cells to heal burns, patch damaged heart tissue, even grow kidneys and other transplantable organs from scratch. This dream edges closer to reality every year, but one of the enduring ...

Dentistry research ID's novel marker for left-handedness

April 27, 2017

Individuals with a slender lower face are about 25 percent more likely to be left-handed. This unexpected finding was identified in 13,536 individuals who participated in three national surveys conducted in the United States.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.