Research uncovers key difference between our bodies' fight against viruses and bacteria

January 12, 2014, University of Nottingham

Scientists at The University of Nottingham have discovered a key difference in the biological mechanisms by which the immune system responds to viral and bacterial pathogens.

The study, published in the journal Nature Immunology and led by Professor Uwe Vinkemeier in the University's School of Life Sciences, centred on STAT1, a protein that can bind DNA and hence plays a vital role in regulating genes in the body.

STAT-1 responds to interferon signals, hormone-like molecules which control communication between cells to trigger defensive action by the body's immune system when pathogens such as bacteria, viruses, or parasites are detected. These powerful defensive actions are also part of the body's ability to control the growth of malignant tumours that can ultimately achieve their complete elimination.

It was previously thought that all interferons used single STAT1-containing units rather than STAT1 chains to regulate the activity of genes. However, using mice bred specially to express a mutated form of STAT1 which is limited to forming single STAT1 units, the Nottingham team has demonstrated that this abolishes the function of some interferons while leaving others largely unaffected.

They found that when the assembly of STAT1 chains was inhibited, type I interferons responsible for protecting against viruses such as were unaffected, whereas type II interferons, which protect against bacterial infections such as listeria, no longer functioned effectively.

Professor Vinkemeier said: "The core of these findings is that we are revising a central aspect of what we thought we knew about how these proteins worked. The molecular mechanisms underlying type I and type II interferon functioning are actually more distinct than we previously imagined. This in turn offers new options for rational pharmacological intervention."

For example, type I interferons, involved in the anti-viral response also play a role in stopping cells from growing and replicating—and therefore inhibiting the spread of the virus throughout the body. These interferons are already in clinical use against Hepatitis virus and several cancers and in the treatment of auto-immune diseases like . Type-II interferon, in contrast, has been shown to be detrimental in some of these conditions, namely multiple sclerosis and melanoma, an aggressive type of skin cancer.

"In situations like these our finding offers a new target for making current treatments more effective. There is good reason to assume that an inhibitor of STAT1 chain formation could potentially block detrimental type-II responses while keeping type I activities, including anti-viral protection, intact. This would avoid an important shortcoming of current STAT1 inhibitors."

Explore further: Genetic diversity: Crucial for our survival in many ways

More information: Paper: dx.doi.org/10.1038/ni.2794

Related Stories

Genetic diversity: Crucial for our survival in many ways

December 20, 2011
(Medical Xpress) -- Thanks to the sequencing of the 27 known human interferon genes, researchers from the Institut Pasteur and the CNRS reconstruct the genetic history of these proteins so central for our immune system, and ...

A first in front line immunity research

July 21, 2013
Monash University researchers have gained new insight into the early stages of our immune response, providing novel pathways to develop treatments for diseases from multiple sclerosis to cancer.

Study identifies protein essential for immune recognition, response to viral infection

November 24, 2013
A Massachusetts General Hospital (MGH)-led research team has identified an immune cell protein that is critical to setting off the body's initial response against viral infection. The report that will be published in an upcoming ...

Recommended for you

Improving vaccines for the elderly by blocking inflammation

January 22, 2018
By identifying why skin immunity declines in old age, a UCL-led research team has found that an anti-inflammatory pill could help make vaccines more effective for elderly people.

Novel genomic tools provide new insight into human immune system

January 19, 2018
When the body is under attack from pathogens, the immune system marshals a diverse collection of immune cells to work together in a tightly orchestrated process and defend the host against the intruders. For many decades, ...

First vaccine developed against grass pollen allergy

January 18, 2018
Around 400 million people worldwide suffer in some form or other from a grass pollen allergy (rhinitis), with the usual symptoms of runny nose, cough and severe breathing problems. In collaboration with the Viennese firm ...

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.