When it comes to vision, brain can perform more than one function without sacrificing time or accuracy

January 15, 2014 by Sonia Fernandez, University of California - Santa Barbara
Human vision is typically clearest in the center of the field of vision, and blurred in the periphery. Credit: UCSB

Many studies suggest that pushing your brain to multitask—writing emails, for instance, while watching the day's latest news and eating breakfast—leads to poorer performance and lower productivity. But for at least one everyday task—visual sampling (the act of picking up bits of visual information through short glances)—multitasking is not a problem for the brain. A collaboration between researchers at the UC Santa Barbara and the University of Bristol in the UK has shown that during visual sampling, the brain can handle various visual functions simultaneously.

"We might not realize it, but human vision is rather limited," said Miguel Eckstein, professor in the Department of Psychological and Brain Sciences at UCSB. "We only see clearly in a small region around our specific focus." Eckstein's study, "Foveal analysis and peripheral selection during active visual sampling," appears in the early Proceedings of the National Academy of Sciences Plus edition.

The crisp clarity of the object directly within your gaze is due to the fovea, a depression at the back interior of your eyeball, which is required for tasks that demand visual acuity, like reading, examination and searches for specific objects or people. When something catches your attention, you swing your gaze to it, lining it up with that tiny depression, allowing for closer inspection, also known as foveal analysis. Whatever falls outside that narrow zone becomes blurry and less distinct.

But when looking for something—say, a specific book among a group of books lined up on a shelf, or a certain prescription in a medicine cabinet, or even a friend in a crowd of people—how do your eyes know where to move to find that book without reading every title on the shelf, or that medicine without examining every bottle and tube in the cabinet, or that person without scrutinizing every face in the group? That process takes place in one's peripheral vision, which, though you might not be aware, your is evaluating and deciding where to direct your gaze as you decide whether or not the thing you are focused on is the object you have been seeking.

"For example, when scanning your book shelves for your blue cover copy of 'Moby Dick,' you only have access to detailed such as the text on the spine where you are currently looking," explained Eckstein. "To view the titles and authors of surrounding books, you would have to shift the line of sight by moving your eyes, and for large gaze shifts, the head. To find 'Moby Dick,' your brain has to do at least two things: analyze the book you are currently looking at to decide whether it is 'Moby Dick,' but also to select candidate blue books in the periphery for an eye movement for future inspections."

The team of researchers—Eckstein, and professors Casimir J. H. Ludwig and J. Rhys Davies of the School of Experimental Psychology at the University of Bristol—discovered that the human brain has the capacity to perform both functions rapidly and accurately, at the same time and independently. The researchers devised various tests that would stimulate each process (foveal analysis and peripheral selection), adding various degrees of difficulty. Using an eye-tracker, they monitored the accuracy of both the observers' foveal and peripheral perceptual judgments and their of point of gaze. The researchers also added random temporal perturbations to the stimulus, and using computational techniques they visualized how the brain utilizes information through time to direct the gaze and to influence the foveal perceptual judgments.

Conventional wisdom on the multitasking brain suggests that simultaneous tasks would result in competition between the two processes and a bottleneck resulting in poorer performance.

"The brain would have to either do one task at a time—slowing the total time to complete both—or do both at the same time but not as well on each of them," said Eckstein, explaining that giving priority to one process—selection in the periphery, for instance—would compromise how well one could make a judgment about an object analyzed with the fovea, or vice versa.

However, the results of these tests demonstrated that neither process was interrupted or slowed by the other. Additionally, the accuracy of the perceptual judgments and the frequency with which participants' gaze pointed to the correct peripheral stimulus were not affected, suggesting that not only do the two processes occur at the same time, but also that one has a certain degree of independence from the other.

This specialized ability to perform both tasks involved in visual sampling may have to do with the sheer amount of time humans spend visually sampling their environment—about 10,000 eye movements per day, much of which is spent doing both foveal analysis and peripheral selection. Other reasons for this ability may have to do with humans' need to maintain vigilance over their periphery while performing focused visual analysis—say while hunting or traveling—over the course of evolution.

"We do not know if this is innate or arises from experience in early life, or both," said Eckstein. However, proving they are parallel, simultaneous and independent functions provide a starting point for understanding how they are coordinated.

Explore further: Study: To get the best look at a person's face, look just below the eyes

Related Stories

Study: To get the best look at a person's face, look just below the eyes

November 26, 2012
They say that the eyes are the windows to the soul. However, to get a real idea of what a person is up to, according to UC Santa Barbara researchers Miguel Eckstein and Matt Peterson, the best place to check is right below ...

Human eye movements for vision are remarkably adaptable

August 15, 2013
When something gets in the way of our ability to see, we quickly pick up a new way to look, in much the same way that we would learn to ride a bike, according to a new study published in the journal Current Biology on August ...

Face identification accuracy is in the eye and brain of the beholder, researchers say

July 24, 2013
Though humans generally have a tendency to look at a region just below the eyes and above the nose toward the midline when first identifying another person, a small subset of people tend to look further down –– at the ...

Neuronal activity in the visual cortex controlled by both where the eyes are looking and what they see

September 20, 2013
Even though our eyes are constantly moving, the brain perceives the external world as stationary—a feat achieved by integrating images acquired by the retina with information about the direction of the gaze. An international ...

Study reveals brain functions during visual searches

July 17, 2012
(Medical Xpress) -- You're headed out the door and you realize you don't have your car keys. After a few minutes of rifling through pockets, checking the seat cushions and scanning the coffee table, you find the familiar ...

Study shows where scene context happens in our brain

May 21, 2013
In a remote fishing community in Venezuela, a lone fisherman sits on a cliff overlooking the southern Caribbean Sea. This man –– the lookout –– is responsible for directing his comrades on the water, who are too close ...

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.