New control target for cancer metabolism: Acetylation

February 6, 2014 by Quinn Eastman, Emory University
New control target for cancer metabolism: Acetylation
Jing Chen and his colleagues have identified a potential drug target that acetylates key metabolic enzymes and diverts fuel away from mitochondria in cancer cells. Acetylation is an important control switch used by cancer cells to distort their metabolism and grow under low oxygen conditions.

(Medical Xpress)—Cancer cells are not interested in sustainability. They gobble up sugar inefficiently, brushing aside their mitochondria, the efficient miniature power plants that supply energy to healthy cells.

Researchers at Winship Cancer Institute, Emory University have identified an important control switch used by to tune down mitochondria and ramp up growth under conditions when oxygen is limited.

Scientists led by Jing Chen, PhD, have identified an enzyme involved in the control switch, ACAT1 (acetyl-CoA acetyltransferase) as a potential anticancer drug target.

The results were published recently in the journal Molecular Cell. Chen is associate professor of hematology and medical oncology at Emory University School of Medicine and Winship Cancer Institute. Co-first authors of the paper are instructor Jun Fan, PhD, postdoctoral fellows Changliang Shan, PhD, and Hee-Bum Kang, PhD.

Co-authors at Winship include hematology and medical oncology faculty Sagar Lonial, MD, Manila Gaddh, MD, Martha Arellano, MD, H. Jean Khoury, MD, Fadlo Khuri, MD and Sumin Kang, PhD. Collaborators at Cell Signaling Technology contributed to the paper.

The findings highlight how acetylation – a chemical modification of a protein, potentially changing its function—on key metabolic enzymes pushes cancer cells' rapid growth.

"Much of the investigation of how cancer cells' altered metabolic enzymes are regulated has emphasized another chemical modification: phosphorylation," Chen says. "We are finding that acetylation may play an equally important role, and that ' acetylation presents opportunities for anticancer drug development. ACAT1 is one of the first examples of a protein acetyltransferase in mitochondria."

Cancer cells tend to turn down their mitochondria in favor of a more inefficient mode of using glucose called glycolysis. This phenomenon is known as the Warburg effect, named after 1931 Nobel laureate Otto Warburg. Cancer cells benefit from this metabolic distortion because the byproducts of glycolysis can be used as building blocks for fast-growing cells.

Chen and his colleagues were focusing on the enzyme pyruvate dehydrogenase. Acting as a sort of control valve, pyruvate dehydrogenase governs how much fuel is sent through mitochondria. Pyruvate dehydrogenase is found in mitochondria in a complex with several other related enzymes.

Chen's team found that in many types of cancer cell lines (lung, head and neck, breast and several types of leukemia), two parts of the pyruvate dehydrogenase complex are acetylated, but these modifications are less abundant in .. These modifications were also found in normal cells stimulated to proliferate by a growth factor involved in cancer signaling (epidermal growth factor), and in samples from patients with acute myeloid leukemia.

Chen's team showed that acetylation of PDHA1 (pyruvate dehydrogenase) and PDP1 (pyruvate dehydrogenase phosphatase) help cells grow in conditions of limited oxygen, which cancer cells often face because they grow faster than their blood supply.

They identified the enzymes that carry out acetylation (ACAT1) and the reverse reaction, deacetylation (SIRT3) on the pyruvate dehydrogenase complex. In addition, they found that "knockdown" of ACAT1 in human cancer cells resulted in reduced tumor growth when the tumors are grafted into mice. ACAT1 has previously found to be elevated in several types of cancer and thus could be an target, Chen says.

However, prolonged inhibition of ACAT1 could lead to ketoacidosis, since a genetic deficiency in ACAT1 in humans causes ketoacidosis; more investigation of the consequences of systemic ACAT1 inhibition are needed, he says.

Explore further: Enzyme that flips switch on cells' sugar cravings could be anti-cancer target

More information: J. Fan et al. Tyr Phosphorylation of PDP1 Toggles Recruitment between ACAT1 and SIRT3 to Regulate the Pyruvate Dehydrogenase Complex. Mol Cell. 53, 1-15 (2014). … 1097-2765(14)00032-X

Related Stories

Enzyme that flips switch on cells' sugar cravings could be anti-cancer target

December 22, 2011
Cancer cells tend to take up more glucose than healthy cells, and researchers are increasingly interested in exploiting this tendency with drugs that target cancer cells' altered metabolism.

Hundreds of alterations and potential drug targets to starve cancer tumors identified

April 21, 2013
A massive study analyzing gene expression data from 22 tumor types has identified multiple metabolic expression changes associated with cancer. The analysis, conducted by researchers at Columbia University Medical Center, ...

Nano-capsules show potential for more potent chemoprevention

January 8, 2014
Researchers at the Winship Cancer Institute of Emory University have discovered a more effective drug delivery system using nanotechnology that could one day significantly affect cancer prevention.

Separating a cancer prevention drug from heart disease risk

September 13, 2011
Several clinical studies have shown that taking the anti-inflammatory drug celecoxib can reduce the risk of developing polyps that lead to colon cancers, at the cost of increasing the risk of heart disease. But what if this ...

Targeting cancer's sweet tooth

October 21, 2013
Ludwig researchers have elucidated a key mechanism by which cancer cells change how they metabolize glucose to generate the energy and raw materials required to sustain runaway growth.

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Presurgical targeted therapy delays relapse of high-risk stage 3 melanoma

January 17, 2018
A pair of targeted therapies given before and after surgery for melanoma produced at least a six-fold increase in time to progression compared to standard-of-care surgery for patients with stage 3 disease, researchers at ...

Dulling cancer therapy's double-edged sword

January 17, 2018
Researchers have discovered that killing cancer cells can actually have the unintended effect of fueling the proliferation of residual, living cancer cells, ultimately leading to aggressive tumor progression.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.