Researchers propose a new combined therapy to treat cancer

February 6, 2014
This image shows tumor cells containing DNA damage (red) after etoposide treatment. Credit: CNIO

A large part of the effort dedicated to cancer research is directed towards the search for combinations of existing drugs—many of which have already been introduced into clinical practice—that permit higher overall survival rates and improvements in the quality of life of cancer patients.

Marcos Malumbres, a researcher at the Spanish National Cancer Research Centre (CNIO), and his team have discovered how etoposide—a drug widely used in the treatment of lung and testicular cancers, leukaemias and brain tumours—could increase its efficiency and specificity in combination with other compounds that interfere with . The results are published today in the journal Cell Reports.

The study has been carried out jointly with the Groups of Óscar Fernández-Capetillo and Javier Muñoz's at the CNIO, and with Hiroyuki Yamano's team at the University College London's Cancer Institute.

Etoposide, a compound obtained from a variant of the mandrake plant, blocks a protein needed for DNA repair during cell division: the Topoisomerase II (TOP2) enzyme. This blocking action increases the damage to genetic material and causes cell death.

Malumbres explains that: "Etoposide affects , which are the ones that divide the most and that need TOP2 to repair their DNA, but it also affects ", adding that: "this lack of specificity causes alterations in healthy tissues that translate into secondary illnesses and toxicity for the organism".

The researchers point out that "the challenge now is to improve the drug's therapeutic window, so that the dose range becomes more effective without increasing toxicity and the secondary effects associated with the treatment".

Treatments targeting tumour cells

Up until now, data on molecular pathways that govern topoisomerase levels in cells were scarce and did not clarify much. Now, Manuel Eguren, a researcher on Malumbres's team, has, for the first time in animal models and in human cell lines, related TOP2 with the cell division protein regulator Cdh1, so that a decrease in Cdh1 activity increases TOP2 levels in cells.

This study allows for the identification of the formula for increasing TOP2 levels in cells. The research team therefore proposes a new form of effective tumour treatment: the combination of Cdh1 inhibitors (amongst which can be found a substance called proTAME) with etoposide.

"proTAME—which is undergoing preclinical trials to inhibit tumour cell division—could increase the effectiveness of etoposide in cancer cells, those that divide the most and those that therefore have a greater dependency on TOP2 to maintain DNA integrity", say the researchers. This combination of drugs could maximise the anti-neoplastic effect of etoposide and would imply a reduction in the dose and lower toxicity.

Previous studies further indicate that Cdh1 is inactive in some patients due to various oncogenic mutations. "Our data suggest that patient stratification based on their tumour´s Cdh1 status could improve the effect of etoposide in these patients' treatment".

The next step for Malumbres' team is to study this new drug cocktail in patients and to investigate the tumours in which this new therapeutic strategy would be most effective.

Explore further: CNIO team turns tumor suppressor into anti-cancer target

Related Stories

CNIO team turns tumor suppressor into anti-cancer target

December 4, 2013
The laboratory of Marcos Malumbres, who is head of the Spanish National Cancer Research Centre's (CNIO) Cell Division & Cancer Group, working alongside Isabel Fariñas' team from the University of Valencia, shows, in a study ...

CNIO researchers propose a new therapeutic target that prevents cell division

October 8, 2013
Cell division is an essential process for the development of an organism. This process, however, can cause tumour growth when it stops working properly. Tumour cells accumulate alterations in their genetic material, and this ...

Study validates new anti-cancer therapy based on cell division

November 18, 2013
Aurora-A is a protein involved in the cell division process that is highly expressed or synthesised in a large number of human cancers, especially in those associated with a bad prognosis. Several pharmaceutical companies ...

Research discovers non–toxic cancer treatment

January 23, 2014
(Medical Xpress)—A University of Queensland researcher is developing a "Trojan horse" non-toxic treatment for human breast cancer.

'Cell' article reveals new resistance mechanism to chemotherapy in breast and ovarian cancer

June 18, 2013
It is estimated that between 5% and 10% of breast and ovarian cancers are familial in origin, which is to say that these tumours are attributable to inherited mutations from the parents in genes such as BRCA1 or BRCA2. In ...

Breaking down cancer's defense mechanisms

December 20, 2013
A possible new method for treating pancreatic cancer which enables the body's immune system to attack and kill cancer cells has been developed by researchers.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.