Studies of cow antibodies help scientists understand how our own bodies work

February 18, 2014, American Institute of Physics
This image shows the crystal structure of bovine antibody BLV1H12 with the exceptionally large, "ball-and-chain" antigen binding domain depicted as red ribbons. The core domains of the heavy and light chains are colored pink and cyan, respectively. Credit: D.Ekiert/University of California, San Francisco

Understanding how antibodies work is important for designing new vaccines to fight infectious diseases and certain types of cancer and for treating disorders of the immune system in animals and humans.

In research to be presented at the 58th Annual Biophysical Society Meeting, taking place in San Francisco from Feb. 15-19, Dr. Damian Ekiert, who is now at the University of California, San Francisco, will describe research he conducted as part of a team of researchers from The Scripps Research Institute in La Jolla, Calif.

In San Francisco, Ekiert will explain how the immune systems of cows are used to understand the diversity of and how that knowledge could improve the health of both people and livestock.

"First, studying the immune systems of cows and other animals helps us to understand how our own immune systems function. Second, the unique structure of these cow antibodies may be particularly well-suited for recognizing certain kinds of antigens and may be useful for antibody based therapies or diagnostics," explained Ekiert.

It turns out that cows make a very unusual kind of antibody different from anything scientists have ever seen before, and their antibodies are diversified by a surprising mechanism.

"Antibody diversity is particularly important because our ability to recognize and neutralize a wide range of pathogens directly depends on the diversity of our antibody repertoire—the more different kinds of antibodies we have in our bodies, the more different kinds of targets we can block," said Ekiert.

Previous work described an unusual subset of antibodies in cows that had exceptionally long loops, but no one knew what they looked like or how they were being generated. A collaborative effort including Ekiert from Ian Wilson's lab at Scripps Research as well as Feng Wang from Peter Schultz's lab and Vaughn Smider, used x-ray crystallography to determine the "ball and chain" structure of the bovine antibodies, while deep sequencing helped researchers study the function and generation of these antibodies. The next steps in realizing the potential of this research are to determine just how these antibodies recognize their target "antigen" molecules and bind to them.

In addition to the obvious benefit of helping us understand the human , the research may benefit the large-scale raising of cattle, an important segment of the U.S. economy, as new vaccines can be developed to protect farm animals from common cattle diseases. Ekiert concludes, "Once we understand these mechanisms, it is possible that bovine antibodies might be able to recognize some antigens that more conventional antibodies cannot, and would help to bind, inhibit and activate targets that have thus far been intractable for antibody-based therapies."

Explore further: Engineered anti-toxin antibodies improve efficacy

More information: The presentation "Reshaping Antibody Diversity" by Damian C. Ekiert, Feng Wang, Ian A. Wilson, Peter G. Schultz and Vaughn V. Smider will be at 11:45 a.m. on Tuesday, February 18, 2014 in Room 303 in San Francisco's Moscone Convention Center. Abstract: tinyurl.com/k4m4twt

Related Stories

Engineered anti-toxin antibodies improve efficacy

January 9, 2014
The effectiveness of toxin-neutralizing antibodies is considered to be mediated through the interaction of the variable region of the antibody and the toxin; however, recent studies suggest that the constant region (Fc) of ...

Antibody builders

November 19, 2013
Antibodies are often the first line of defense against the body's invaders.  Built to recognize and attack foreign bacteria and viruses, antibody molecules are released by cells to do battle with microbial hostiles as part ...

The ultimate decoy: Scientists find protein that helps bacteria misdirect immune system

February 6, 2014
A team led by scientists at The Scripps Research Institute (TSRI) has discovered an unusual bacterial protein that attaches to virtually any antibody and prevents it from binding to its target. Protein M, as it is called, ...

Newly engineered monoclonal antibody moves toward clinical testing

January 29, 2014
(Medical Xpress)—Using monoclonal antibodies to fight cancer is a complex, yet promising area of study. At Memorial Sloan Kettering Cancer Center, physician-scientists have focused their attention on expanding the current ...

Recommended for you

Improving vaccines for the elderly by blocking inflammation

January 22, 2018
By identifying why skin immunity declines in old age, a UCL-led research team has found that an anti-inflammatory pill could help make vaccines more effective for elderly people.

Novel genomic tools provide new insight into human immune system

January 19, 2018
When the body is under attack from pathogens, the immune system marshals a diverse collection of immune cells to work together in a tightly orchestrated process and defend the host against the intruders. For many decades, ...

First vaccine developed against grass pollen allergy

January 18, 2018
Around 400 million people worldwide suffer in some form or other from a grass pollen allergy (rhinitis), with the usual symptoms of runny nose, cough and severe breathing problems. In collaboration with the Viennese firm ...

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.