New ideas change your brain cells: UBC research

February 24, 2014

A new University of British Columbia study identifies an important molecular change that occurs in the brain when we learn and remember.

Published this month in Nature Neuroscience, the research shows that learning stimulates our in a manner that causes a small fatty acid to attach to delta-catenin, a protein in the brain. This biochemical modification is essential in producing the changes in brain cell connectivity associated with learning, the study finds.

In animal models, the scientists found almost twice the amount of modified delta-catenin in the brain after learning about new environments. While delta-catenin has previously been linked to learning, this study is the first to describe the protein's role in the molecular mechanism behind .

"More work is needed, but this discovery gives us a much better understanding of the tools our brains use to learn and remember, and provides insight into how these processes become disrupted in neurological diseases," says co-author Shernaz Bamji, an associate professor in UBC's Life Sciences Institute.

It may also provide an explanation for some mental disabilities, the researchers say. People born without the gene have a severe form of mental retardation called Cri-du-chat syndrome, a named for the high-pitched cat-like cry of affected infants. Disruption of the delta-catenin gene has also been observed in some patients with schizophrenia.

"Brain activity can change both the structure of this protein, as well as its function," says Stefano Brigidi, first author of the article and a PhD candidate Bamji's laboratory. "When we introduced a mutation that blocked the biochemical modification that occurs in healthy subjects, we abolished the structural changes in brain's cells that are known to be important for memory formation."

Explore further: Scientists discover protein's role in human memory and learning functions

Related Stories

Scientists discover protein's role in human memory and learning functions

February 19, 2014
Scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) have identified the precise role of the protein, SNX27, in the pathway leading to memory and learning impairment. The study broadens the understanding ...

Mechanism behind the activation of dormant memory cells discovered

February 20, 2014
The electrical stimulation of the hippocampus in in-vivo experiments activates precisely the same receptor complexes as learning or memory recall. This has been discovered for the first time and the finding has now been published ...

Neuroscience study uncovers new player in obesity

January 7, 2014
A new neuroscience study sheds light on the biological underpinnings of obesity. The in vivo study, published in the January 8 issue of the Journal of Neuroscience, reveals how a protein in the brain helps regulate food intake ...

Mechanism in Alzheimer's-related memory loss identified

January 19, 2014
Cleveland Clinic researchers have identified a protein in the brain that plays a critical role in the memory loss seen in Alzheimer's patients, according to a study to be published in the journal Nature Neuroscience and posted ...

Recommended for you

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.