Mechanism behind the activation of dormant memory cells discovered

February 20, 2014
Mechanism behind the activation of dormant memory cells discovered

The electrical stimulation of the hippocampus in in-vivo experiments activates precisely the same receptor complexes as learning or memory recall. This has been discovered for the first time and the finding has now been published in the highly respected journal Brain Structure Function.

"This may form the basis for the use of medications aimed at powering up dormant or less active memory cells," says Gert Lubec, Head of Fundamental Research / Neuroproteomics at the University Department of Paediatrics and Adolescent Medicine at the MedUni Vienna.

"This discovery has far-reaching consequences both for the molecular understanding of memory formation and the understanding of the clinical , which is already possible, of areas of the brain for therapeutic purposes," says the MedUni Vienna researcher. Similar principles are currently already being used in the field of . With this technology, an implanted device delivers electronic impulses to the patient's brain. This allows neuronal circuits to be influenced that control both behaviour and memory.

The latest findings very much form part of the highly controversial subject of "cognitive enhancement". Scientists are currently discussing the possibility of improving mental capacity through the use of drugs - including in healthy subjects of all age groups, but especially in patients with age-related impairments of cognitive processes.

With regard to the study design, two electrodes were implanted into the brain in an animal model. One transferred electrical impulses to stimulate the hippocampus, while the other transferred the electrical signals away. "These electrical potentials are the electrical equivalent of memory and are known as LTP (Long Term Potentiation)," explains Lubec. The generation of LTP in an in-vivo experiment was accompanied by specific changes in the receptor complexes - the same receptor complexes that are also activated during learning and .

Explore further: Learning requires rhythmical activity of neurons

More information: "Dorsal hippocampal brain receptor complexes linked to the protein synthesis-dependent late phase (LTP) in the rat." Lin Li, Han Wang, Maryam Ghafari, Gunyong An, Volker Korz, Gert Lubec. Brain Structure and Function. 01/2014; DOI: 10.1007/s00429-013-0699-z.

Related Stories

Learning requires rhythmical activity of neurons

September 26, 2012
The hippocampus represents an important brain structure for learning. Scientists at the Max Planck Institute of Psychiatry in Munich discovered how it filters electrical neuronal signals through an input and output control, ...

Electrical stimulation of brain boosts birth of new cells, may improve memory

September 20, 2011
Stimulating a specific region of the brain leads to the production of new brain cells that enhance memory, according to an animal study in the September 21 issue of The Journal of Neuroscience. The findings show how deep ...

New depression treatments reported

February 14, 2014
New insights into the physiological causes of depression are leading to treatments beyond common antidepressants such as Prozac and Zoloft, researchers are reporting in the in the journal Current Psychiatry.

Study indicates reverse impulses clear useless information, prime brain for learning

March 19, 2013
(Medical Xpress)—When the mind is at rest, the electrical signals by which brain cells communicate appear to travel in reverse, wiping out unimportant information in the process, but sensitizing the cells for future sensory ...

Study finds factors that may cause fluctuations in deep brain stimulation levels over time

July 11, 2013
Deep brain stimulation therapy blocks or modulates electrical signals in the brain to improve symptoms in patients suffering from movement disorders such as Parkinson's disease, essential tremor and dystonia, but a new study ...

Researchers conduct deep brain stimulation in Alzheimer's patient

February 1, 2013
(Medical Xpress)—Researchers at the University of Florida have performed deep brain stimulation on a patient with Alzheimer's disease as part of a clinical trial studying whether the treatment can slow progression of the ...

Recommended for you

Research revises our knowledge of how the brain learns to fear

October 23, 2017
Our brains wire themselves up during development according to a series of remarkable genetic programs that have evolved over millions of years. But so much of our behavior is the product of things we learn only after we emerge ...

High-speed locomotion neurons found in the brainstem

October 23, 2017
Think of taking a casual stroll on a sunny Sunday afternoon or running at full speed to catch a bus for work on Monday morning as two extremes. Both forms of locomotion entail a perfect interplay between arms and legs, yet ...

Scientists use supercomputer to search for "memory molecules"

October 23, 2017
Until now, searching for genes related to memory capacity has been comparable to seeking out the proverbial "needle in a haystack." Scientists at the University of Basel made use of the CSCS supercomputer Piz Daint to discover ...

Researchers create tool to measure, control protein aggregation

October 22, 2017
A common thread ties seemingly unlinked disorders like Alzheimer's disease and type II diabetes together. This thread is known as protein aggregation and happens when proteins clump together. These complexes are a hallmark ...

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.