Mechanism behind the activation of dormant memory cells discovered

February 20, 2014
Mechanism behind the activation of dormant memory cells discovered

The electrical stimulation of the hippocampus in in-vivo experiments activates precisely the same receptor complexes as learning or memory recall. This has been discovered for the first time and the finding has now been published in the highly respected journal Brain Structure Function.

"This may form the basis for the use of medications aimed at powering up dormant or less active memory cells," says Gert Lubec, Head of Fundamental Research / Neuroproteomics at the University Department of Paediatrics and Adolescent Medicine at the MedUni Vienna.

"This discovery has far-reaching consequences both for the molecular understanding of memory formation and the understanding of the clinical , which is already possible, of areas of the brain for therapeutic purposes," says the MedUni Vienna researcher. Similar principles are currently already being used in the field of . With this technology, an implanted device delivers electronic impulses to the patient's brain. This allows neuronal circuits to be influenced that control both behaviour and memory.

The latest findings very much form part of the highly controversial subject of "cognitive enhancement". Scientists are currently discussing the possibility of improving mental capacity through the use of drugs - including in healthy subjects of all age groups, but especially in patients with age-related impairments of cognitive processes.

With regard to the study design, two electrodes were implanted into the brain in an animal model. One transferred electrical impulses to stimulate the hippocampus, while the other transferred the electrical signals away. "These electrical potentials are the electrical equivalent of memory and are known as LTP (Long Term Potentiation)," explains Lubec. The generation of LTP in an in-vivo experiment was accompanied by specific changes in the receptor complexes - the same receptor complexes that are also activated during learning and .

Explore further: Learning requires rhythmical activity of neurons

More information: "Dorsal hippocampal brain receptor complexes linked to the protein synthesis-dependent late phase (LTP) in the rat." Lin Li, Han Wang, Maryam Ghafari, Gunyong An, Volker Korz, Gert Lubec. Brain Structure and Function. 01/2014; DOI: 10.1007/s00429-013-0699-z.

Related Stories

Learning requires rhythmical activity of neurons

September 26, 2012
The hippocampus represents an important brain structure for learning. Scientists at the Max Planck Institute of Psychiatry in Munich discovered how it filters electrical neuronal signals through an input and output control, ...

Electrical stimulation of brain boosts birth of new cells, may improve memory

September 20, 2011
Stimulating a specific region of the brain leads to the production of new brain cells that enhance memory, according to an animal study in the September 21 issue of The Journal of Neuroscience. The findings show how deep ...

New depression treatments reported

February 14, 2014
New insights into the physiological causes of depression are leading to treatments beyond common antidepressants such as Prozac and Zoloft, researchers are reporting in the in the journal Current Psychiatry.

Study indicates reverse impulses clear useless information, prime brain for learning

March 19, 2013
(Medical Xpress)—When the mind is at rest, the electrical signals by which brain cells communicate appear to travel in reverse, wiping out unimportant information in the process, but sensitizing the cells for future sensory ...

Study finds factors that may cause fluctuations in deep brain stimulation levels over time

July 11, 2013
Deep brain stimulation therapy blocks or modulates electrical signals in the brain to improve symptoms in patients suffering from movement disorders such as Parkinson's disease, essential tremor and dystonia, but a new study ...

Researchers conduct deep brain stimulation in Alzheimer's patient

February 1, 2013
(Medical Xpress)—Researchers at the University of Florida have performed deep brain stimulation on a patient with Alzheimer's disease as part of a clinical trial studying whether the treatment can slow progression of the ...

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.