Why do some neurons respond so selectively to words, objects and faces?

February 27, 2014, University of Bristol
Why do some neurons respond so selectively to words, objects and faces?

Some neurons in the brain respond to words, objects and faces in a highly selective manner, consistent with the so-called 'grandmother cell' theory whereby a particular neuron activates when a person sees, hears or otherwise senses a specific entity, such as his or her grandmother. For example, a neuron in a human was found to respond to images of Jennifer Aniston but not to other people, objects or scenes.

So why do neurons respond in this remarkable way? A new study by Professor Jeff Bowers and colleagues at the University of Bristol argues that highly selective are well suited to co-activating multiple things, such as words, objects and faces, at the same time in short-term memory.

The researchers trained an to remember words in short-term memory. Like a brain, the network was composed of a set of interconnected units that activated in response to inputs; the network 'learnt' by changing the strength of connections between units. The researchers then recorded the activation of the units in response to a number of different words.

When the network was trained to store one word at a time in short-term memory, it learned highly distributed codes such that each unit responded to many different words. However, when it was trained to store multiple words at the same time in short-term memory it learned highly selective ('grandmother cell') units – that is, after training, single units responded to one word but not any other. This is much like the neurons in the cortex that respond to one face amongst many.

Why did the network learn such highly specific representations when trained to co-activate multiple words at the same time? Professor Bowers and colleagues argue that the non-selective representations can support memory for a single word, given that a pattern of activation across many non-selective units can uniquely represent a specific word. However, when multiple patterns are mixed together, the resulting blend pattern is often ambiguous (the so-called 'superposition catastrophe').

This ambiguity is easily avoided, however, when the learns to represent words in a highly selective manner, for example, if one unit codes for the word RACHEL, another for MONICA, and yet another JOEY, there is no ambiguity when the three units are co-activated.

Professor Bowers said: "Our research provides a possible explanation for the discovery that single neurons in the cortex respond to information in a highly selective manner. It's possible that the cortex learns highly selective codes in order to support short-term memory."

The study is published in Psychological Review.

Explore further: Mapping objects in the brain

Related Stories

Mapping objects in the brain

December 20, 2013
A brain region that responds to a particular category of objects is found to consist of small clusters of neurons encoding visual features of these objects.

Researchers discover key to the reduction of forgetting

December 12, 2013
A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appeared in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are ...

Clouds in the head

May 21, 2013
Many brain researchers cannot see the forest for the trees. When they use electrodes to record the activity patterns of individual neurons, the patterns often appear chaotic and difficult to interpret.

How connections in the brain must change to form memories could help to develop artificial cognitive computers

November 7, 2012
Exactly how memories are stored and accessed in the brain is unclear. Neuroscientists, however, do know that a primitive structure buried in the center of the brain, called the hippocampus, is a pivotal region of memory formation. ...

Neuroscientists find a key to reducing forgetting—it's about the network

August 29, 2013
A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appear in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.