Researchers discover key to the reduction of forgetting

December 12, 2013 by James Devitt

A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appeared in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are to forget newly obtained information.

The study was conducted at NYU by Lila Davachi, an associate professor in the Department of Psychology and Center for Neural Science, and Kaia Vilberg, now a postdoctoral researcher at the University of Texas.

"When memories are supported by greater coordination between different parts of the brain, it's a sign that they are going to last longer," explains Davachi.

It is commonly understood that the key to memory consolidation—the cementing of an experience or information in our brain—is signaling from the brain's hippocampus across different cortical areas. Moreover, it has been hypothesized, but never proven, that the greater the distribution of signaling, the stronger the memory takes hold in our brain.

In the Neuron study, Davachi and Vilberg sought to determine if there was scientific support for this theory. To do so, they examined how memories are formed at their earliest stages through a series of experiments over a three-day period.

On day one of the study, the researchers aimed to encode, or create, among the study's subjects. They showed participants a series of images—objects and outdoor scenes, both of which were paired with words. Subjects were asked to form an association between the word and image presented on the screen.

On day two, the subjects returned to the lab and completed another round of encoding tasks using new sets of visuals and words. This allowed the researchers to compare two types of memory: the more consolidated, long duration memories encoded on day one, with the less consolidated, short duration memories encoded on day two.

After a short break, participants were placed in an MRI machine—in order to monitor neural activity—and viewed the same visual-word pairings they saw on days one and two as well as a new round of visuals paired with words. They then completed a memory test of approximately half of the visual-word pairings they'd seen thus far. On day three, they returned to the lab for a on the remaining visuals.

By testing over multiple days, the researchers were able to isolate memories that declined or were preserved over time and, with it, better understand the neurological factors that contribute to memory preservation.

Their results showed that memories (i.e., the visual-word associations) that were not forgotten were associated with greater coordination between the hippocampus and left perirhinal cortex (LPRC)—two parts of the brain previously linked with memory formation. By contrast, there was notably less connectivity between these regions for visual-word associations that the study's subjects tended to forget.

Moreover, the researchers found that the coordinated between the and the LPRC—but not overall activity in these regions—was related to memory strengthening, arguing for the network's contribution to memory longevity.

"These findings show the brain strengthens memories by distributing them across networks," explains Davachi. "However, this process takes time. Day-old memories show greater coordinated brain activity compared to recent ones. This suggests that coordinated brain activity increases with time after a is initially formed."

Explore further: Neuroscientists find a key to reducing forgetting—it's about the network

Related Stories

Neuroscientists find a key to reducing forgetting—it's about the network

August 29, 2013
A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appear in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are ...

Recurring memory traces boost long-lasting memories

December 5, 2013
While the human brain is in a resting state, patterns of neuronal activity which are associated to specific memories may spontaneously reappear. Such recurrences contribute to memory consolidation—i.e. to the stabilization ...

Turning off major memory switch dulls memories

December 11, 2013
A faultily formed memory sounds like hitting random notes on a keyboard while a proper one sounds more like a song, scientists say.

How connections in the brain must change to form memories could help to develop artificial cognitive computers

November 7, 2012
Exactly how memories are stored and accessed in the brain is unclear. Neuroscientists, however, do know that a primitive structure buried in the center of the brain, called the hippocampus, is a pivotal region of memory formation. ...

Study creates new memories by directly changing the brain

September 10, 2013
By studying how memories are made, UC Irvine neurobiologists created new, specific memories by direct manipulation of the brain, which could prove key to understanding and potentially resolving learning and memory disorders.

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.