Recurring memory traces boost long-lasting memories

December 5, 2013
Recurring memory traces boost long-lasting memories
Magnetic resonance imaging provides insights into the brain. Credit: DZNE/Guido Hennes

While the human brain is in a resting state, patterns of neuronal activity which are associated to specific memories may spontaneously reappear. Such recurrences contribute to memory consolidation—i.e. to the stabilization of memory contents. Scientists of the German Center for Neurodegenerative Diseases and the University of Bonn are reporting these findings in the current issue of The Journal of Neuroscience.

The researchers headed by Nikolai Axmacher performed a on a series of persons while monitoring their brain activity by functional magnetic resonance imaging (fMRI). The experimental setup comprised several resting states including a nap inside a neuroimaging scanner. The study indicates that resting periods can generally promote memory performance.

Depending on one's mood and activity different regions are active in the . Perceptions and thoughts also influence this condition and this results in a pattern of neuronal activity which is linked to the experienced situation. When it is recalled, similar patterns, which are slumbering in the brain, are reactivated. How this happens, is still largely unknown.

The prevalent theory of memory formation assumes that memories are stored in a gradual manner. At first, the brain stores new information only temporarily. For memories to remain in the long term, a further step is required. "We call it consolidation", Dr. Nikolai Axmacher explains, who is a researcher at the Department of Epileptology of the University of Bonn and at the Bonn site of the DZNE. "We do not know exactly how this happens. However, studies suggest that a process we call reactivation is of importance. When this occurs, the brain replays activity patterns associated with a particular memory. In principle, this is a familiar concept. It is a fact that things that are actively repeated and practiced are better memorized. However, we assume that a reactivation of memory contents may also happen spontaneously without there being an external trigger."

A memory test inside the scanner

Axmacher and his team tested this hypothesis in an experiment that involved ten healthy participants with an average age of 24 years. They were shown a series of pictures, which displayed – among other things – frogs, trees, airplanes and people. Each of these pictures was associated with a white square as a label at a different location. The subjects were asked to memorize the position of the square. At the end of the experiment all images were shown again, but this time without the label. The study participants were then asked to indicate with a mouse cursor where the missing mark was originally located. Memory performance was measured as the distance between the correct and the indicated position.

"This is an associative task. Visual and spatial perceptions have to be linked together", the researcher explains. "Such tasks involve several brain regions. These include the visual cortex and the hippocampus, which takes part in many memory processes."

Brain activity was recorded by fMRI during the entire experiment, which lasted several hours and included resting periods and a nap inside the neuroimaging scanner.

Recurrent brain patterns increased the accuracy

For data processing a pattern recognition algorithm was trained to look for similarities between neuronal patterns observed during initial encoding and patterns appearing at later occasions. "This method is complex, but quite effective", Axmacher says. "Analysis showed that neuronal activity associated with images that were shown initially did reappear during subsequent resting periods and in the sleeping phase."

Memory performance correlated with the replay of patterns. "The more frequently a pattern had reappeared, the more accurate test participants could label the corresponding image", Axmacher summarizes the findings. "These results support our assumption that neural patterns can spontaneously reappear and that they promote the formation of long-lasting memory contents. There was already evidence for this from animal studies. Our experiment shows that this phenomenon also happens in humans."

Memory performance benefits from resting periods

The study indicates that resting periods can generally foster . "Though, our data did not show whether sleeping had a particular effect. This may be due to the experimental setup, which only allowed for a comparatively short nap", Axmacher reckons. "By contrast, night sleep is considered to be beneficial for the consolidation of memory contents. But it usually takes many hours and includes multiple transitions between different stages of sleep. However, other studies suggest that even short naps may positively affect ."

An objective look at memory contents

It is up to speculation whether the recurring brain patterns triggered conscious memories or whether they remained below the threshold of perception. "I think it is reasonable to assume that during resting periods the test participants let their mind wander and that they recalled images they had just seen before. But this is a matter of subjective perception of the test participants. That's something we did not look at because it is not essential for our investigation", Axmacher says. "The strength of our approach lies rather in the fact that we look at contents from the outside, in an objective manner. And that we can evaluate them by pattern recognition. This opens ways to many questions of research. For example, that reoccur spontaneously are also of interest in the context of experimental dream research."

Explore further: Changes in patterns of brain activity predict fear memory formation

More information: "Memory consolidation by replay of stimulus-specific neural activity", The Journal for Neuroscience, published on December 4, 2013, DOI: 10.1523/JNEUROSCI.0414-13.2013

Related Stories

Changes in patterns of brain activity predict fear memory formation

March 4, 2013
Psychologists at the University of Amsterdam (UvA) have discovered that changes in patterns of brain activity during fearful experiences predict whether a long-term fear memory is formed. The research results have recently ...

Neuroscientists find a key to reducing forgetting—it's about the network

August 29, 2013
A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appear in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are ...

The pauses that refresh the memory

November 29, 2013
Sufferers of schizophrenia experience a broad gamut of symptoms, including hallucinations and delusions as well as disorientation and problems with learning and memory. This diversity of neurological deficits has made schizophrenia ...

Aerobic fitness and hormones predict recognition memory in young adults

December 2, 2013
Researchers at Boston University School of Medicine (BUSM) have found further evidence that exercise may be beneficial for brain health and cognition. The findings, which are currently available online in Behavioural Brain ...

Brain activity in sleep may impact emotional disturbances in children with ADHD

May 29, 2013
Sleep consolidates emotional memories in healthy children but not in children with attention-deficit hyperactivity disorder (ADHD), according to research published May 29 in the open access journal PLOS ONE by Alexander Prehn-Kristensen ...

Recommended for you

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.